

1

ACCURATELY ESTIMATING AND BUILDING THE YIELD CURVE

RISK Yield Curve Course, October 1999

Thomas S. Coleman

tcoleman@closemountain.com

ÆQUILIBRIUM INVESTMENTS LIMITED

- General Approach to Fitting Yield Curve
- Mathematics of Yield & Forward Curve
- Simple Example
- Use of and Criteria for Curves
- Choice of Input Data
- Various Functional Forms

Fitting The Yield Curve - Outline

- General Approach
 - Define discount function with a functional form for forward curve
 - Choosing market data (inputs) and appropriately describing the instruments
 - Define and implementing an appropriate objective function and fitting methodology
 - All instruments priced through discount function

• O Æ

Fitting the Yield Curve - Diagram

- Modularize
 - Separate curve from instrument details
- Re-use code
 - Use DiscFact in curve and swap pricing
 - Use same subroutines to price instruments
- Build in flexibility
 - Changing forward curve and instruments

- Term structure of interest rates expressed as
 - forward curve
 - zero curve
 - discount curve
- I like to use forward curve, but matter of taste

- Discount curve in terms of zeros / forwards $df(t) = e^{[-y(t)\cdot t]} \quad df(t) = \exp\left[-\int_{0}^{t} f(u)du\right]$
 - Relation between forwards and zeros:

$$y(t) = \left[\int_{0}^{t} f(u) du\right] / t$$

Yield Curve Mathematics - cont'd

- These expressions are for continuously compounded forward and zero rates
- Zero is an "average" of forwards smoothed

Coleman - Building the Yield Curve

Æ

Example - Forward Curve

- Forward curve functional form
 - Piece-wise constant forwards f_1 , f_2 , f_3
 - Breaks at 2, 3, 5 years
- Discount factor function $df(t) = \exp[-f_1 * t] \qquad \text{for } t \le 2$ $df(t) = \exp[-2f_1 - f_2 * (t-2)] \qquad \text{for } 2 < t \le 3$ $df(t) = \exp[-2f_1 - f_2 - f_3 * (t-3)] \qquad \text{for } 3 < t \le 5$

• Just swaps for example

Type	Matur	Freq	Rate
Swap	2 yrs	Semi	6.36
Swap	3 yrs	Semi	6.50
Swap	5yrs	Semi	6.66

• NPV of swap

$$NPV = \sum_{i=1}^{2^{*}yrs} df (i/2) \cdot rate / 2 + 100 \cdot df (yrs) - 100$$

- Fit forwards so that all NPVs are zero $NPV(2yr; f_1, f_2, f_3) = 0$ $NPV(3yr; f_1, f_2, f_3) = 0$ $NPV(5yr; f_1, f_2, f_3) = 0$
- Fit forwards sequentially (bootstrap)
 - Fit f_1 by solving NPV(2yr; f_1) = 0 since 2 year swap depends only on first forward rate.
 - Then fit f_2 by solving NPV(3yr; f_1 , f_2) = 0

- First forward is 2 yr rate 6.26%cc = 6.36%sab
- Second and third forwards easy to bootstrap
 - Can do it with HP12C
 - $f_2 = 6.70\% cc = 6.81\% sab$
 - $f_3 = 6.83\%$ cc = 6.94% sab

- Extending this is easy conceptually
- As always, devil is in the details
 - Swap payments may not fall on exact dates e.g. holidays
 - Futures and deposits
- This general approach separating forward curve from instrument - simplifies details
 Details encapsulated in instrument subroutine

- Mark-to-market (interpolator)
 - Curve used for daily MTM of derivatives portfolio
 - E.g. swaps portfolio from liquid futures & swaps
- Rich-cheap analysis (smoothing)
 - Curve used to identify instruments whose market price is rich or cheap relative to others
 - E.g. US Treasury curve with 200 bonds

- Relatively few inputs, each reprices exactly
- Speed and simplicity
- Localization
- Reasonably smooth forwards

- Generally many inputs, none fit exactly
- Smoothing noisy data to reasonable market curve
- Strong localization not required
- Speed and simplicity less important

- Depends largely on use of the curve
- For MTM
 - Liquid instruments with good, easily observed market quotes
 - Instruments actually used to hedge the book

- Generally three "sectors"
 - Money market libor deposits
 - FRA / Futures
 - Swaps

- Generally needed to "tie-down" the front of the curve
 - In US I would use over night, 1 week, 2 week,
 1 month, then switch to futures
 - Exact deposits used depends on futures dates
- But beware of liquidity problems with longer (e.g. 6 month) deposits
 - Longer deposits and shorter futures may not always match - choose liquidity?

- Choose between FRAs and futures based on liquidity and transparency
 - In USD, CAD, GBP, EUR I would use futures.
 In some other currencies FRAs
- Big issue of convexity
 - FRA payoff is convex in rate
 - Futures payoff is linear in rate (\$25 / tick)

- Deposits, FRAs, swaps all same "class" of instrument
 - Can synthetically construct one from the other
 Arbitrage
- Futures with linear payoff is different
- Futures is not simply PV off FRA curve
 - Must use term-structure model to price
 - There are approximations for the convexity correction

Input Data - Convexity Approximation

- Doust's approximation for convexity correction:
 - R_{fut} = R_{fra} / DF_{exp}^[½σ²t*(t+½)/(t+¼)]
 t = time to futures expiry (in years)
 R_{fra} = forward (FRA) rate from the curve
 DF_{exp} = discount rate to futures expiry date
 σ = volatility in decimal, i.e. 0.20.
 P. Doust, "Relative Pricing Techniques in the
 - Swaps and Options Markets," J. Financial Engineering, March 1995

- Instruments straightforward
 - But must get frequency, day-count, etc., correct
 - Details change between markets advantage of separating curve and instruments
- Where to switch from futures to swaps
 - Depends on liquidity and hedge instruments
 - We used 4 years of futures, 5 year swap

- Discuss three (four)
 - Piece-wise constant forward (PWCF)
 - Piece-wise linear zeros (PWLZ)
 - Piece-wise linear forwards (PWLF) twisted and smoothed
- Do not discuss cubic splines
 - Popular, but problems with non-localization
 - In my opinion, not a good form for MTM

- Choose break points (usually instrument maturities)
- Forwards constant between breaks

Functional Forms - PWCF

- Choose break points (usually instrument maturities)
- Zeros linear between breaks
 - Zeros linear, continuous across breaks (knots)
 but not smooth
 - Forwards linear between breaks, discontinuous across breaks
- Most common market method (or close)
- Large jumps in forwards

Functional Forms - PWLZ

- Choose break points (usually instrument maturities)
- Forwards linear between breaks
 - Generally more parameters than instruments
 - Twisted set slope average of forwards on either side
 - Smoothed minimize jumps and change in slopes
 - Two methods give virtually same results

Functional Forms - PWLF (twisted)

Coleman - Building the Yield Curve

 $\frac{C}{AE}$

- Risk measurement dependent on forward curve functional form
 - Constant forwards risk interpolated approximately proportional to BPV
 - Linear zeros risk interpolated approximately linearly
- Example hedge 20 year with 10 & 30
 - Constant forwards ratio of 22%/78%
 - Linear zero ratio of 42%/58%

Addendum - Approximate Forwards

- Converts par yields (exact years) to PWCF
- Based on implicit function theorem
 - Par yield as function of forwards: $y_i = Y(f_1,...,f_i)$
 - $dy_i = \sum_j a_{ij} df_j$ $a_{ij} = \partial y_i / \partial f_j$ – Implies $dY = A \cdot dF$ $dF = A^{-1} \cdot dY$
 - Approx:
- $F \approx A^{-1} \cdot Y$ $a_{ii} = \partial y_i / \partial f_i \approx [\partial PV_i / \partial f_i] / [dPV_i / dy_i]$ based on $dPV_i = [dPV_i/dy_i]dy_i = \sum_i [\partial PV_i/\partial f_i]df_i$ $\Rightarrow dy_i = \sum_i \{ [\partial PV_i / \partial f_i] / [dPV_i / dy_i] \} df_i$ approximate $[\partial PV_i/\partial f_i]$ by DV01 of forward bond

__O Æ

• Consider steeply down-ward sloping sterling swap curve, August 1999:

Matur	Par Y	Approx	True PWCF
5	6.74%	6.74%	6.74%
10	6.46%	6.08%	6.08%
20	5.98%	5.12%	5.14%
30	5.61%	3.91%	4.00%

- Works well considering steepness of curve
 - Error 9bp at 20-30 years

- Fitting the yield curve not difficult
- Big returns to a methodical approach
- Choose forward curve functional form based on how curve is used
- Choice of functional form matters