Convexity And Correlation Effects in Swap Pricing

Thomas S. Coleman

Overall Themes

- Discounting Expected Cash Flows
- Use Simplest Model Which Solves Problem
- Focus on Hedging and Managing Risks

Correlation - Spread Options

- Products which naturally incorporate correlation
- Single yield curve spreads
- Across yield curves - swap spreads
- Across yield curves - Gilts vs. Bunds
- More complicated - index amortization swaps

Spread Option - Example

- Focus on specific example - call on 2 vs. 10 year swap yields
- Two contrasting views
- Two underliers: $\mathrm{Y}_{10}-\mathrm{Y}_{2}$
- Correlation matters
- One underlier: $\mathrm{S}_{10 \mathrm{vs2}}$
- Correlation only enters indirectly

Spread Option - Pricing Theory

- Discount ECF using risk-neutral measure
- Take expectation of payout:

$$
\mathrm{E}\left[\left(\mathrm{Y}_{10}-\mathrm{Y}_{2}\right)-\mathrm{K} \mid\left(\mathrm{Y}_{10}-\mathrm{Y}_{2}\right)>\mathrm{K}\right]
$$

Or

$$
\mathrm{E}[\mathrm{~S}-\mathrm{K} \mid \mathrm{S}>\mathrm{K}]
$$

Spread Option - Pricing Theory

- Principle of using simplest model which fits
- Here we can use simple model
- Option is European
- Depends on two variables $-\mathrm{Y}_{10} \& \mathrm{Y}_{2}$

Spread Option - Pricing Theory

- Now must make some decisions
- What are some reasonable assumptions about Y_{10}, Y_{2}, and S ?
- $\ln \left(\mathrm{Y}_{10}\right) \& \ln \left(\mathrm{Y}_{2}\right)$ jointly normal with correlation ρ
- S normally distributed with standard deviation s
- Introduce a new variable - ρ or s

Spread Option - Pricing Theory

- Focus on normal spread model

$$
\mathrm{NPV}(\text { call })=\mathrm{DF}(3 \mathrm{mth}) \int_{\mathrm{S}=\mathrm{K}}^{\infty}(\mathrm{S}-\mathrm{K}) \mathrm{g}(\mathrm{~S}) \mathrm{dS}
$$

$$
g(S)=\frac{1}{\sqrt{2 \pi s^{2} t}} \exp \left(\frac{(S-F)^{2}}{2 s^{2} t}\right)
$$

$\mathrm{NPV}=\mathrm{DF}(3 \mathrm{mth}) \mathrm{st} \cdot{ }^{5}[\phi(\mathrm{~d})+\mathrm{d} \Phi(\mathrm{d})]$ $\mathrm{d}=(\mathrm{F}-\mathrm{K}) / \mathrm{st}^{5}$

Spread Option - Practical Pricing

- Pricing - must come up with inputs
$-\mathrm{F}_{10}$ and F_{2} off of forward curve (but see convexity adjustment below)
- s - Standard Deviation of spread
- S.D. depends on correlation
$\operatorname{Var}(\mathrm{S})=\operatorname{Var}\left(\mathrm{Y}_{10}\right)-2 \rho \mathrm{SD}\left(\mathrm{Y}_{10}\right) \mathrm{SD}\left(\mathrm{Y}_{2}\right)+\operatorname{Var}\left(\mathrm{Y}_{2}\right)$
- Trading decision on level of s or ρ

Spread Option - Practical Pricing

- For US
- 3 mth fwd 2 year rate
- 3 mth fwd 10 year rate
- Forward spread
- LN volatility of 2 year
- LN volatility of 10 year
- Historical correlation
- Spread standard deviation
6.23
6.96
73.8bp
20.0\%
16.5\%

93\%
46 bp

Spread Option - Pricing and Risk

- Resulting Spread Option Price
- Three month call option, ATM
- Price 9.1bp
- Benefits if spread widens
- Three month put option, 10bp OTM
- Price 5.0bp
- Benefits if spread narrows

Spread Option - Hedging

- Must hedge against movements in either
- yields, vols, correlations
- Spread, standard deviation of spread
- Two ways of saying same thing

Spread Option - Hedging

- Difficult to hedge
- Flip side of difficulty in choosing level of s or ρ
- Usually must live with the correlation / spread standard deviation risk
- To hedge trade the spread - delta hedge

Spread Option - Risk Measurement

- Two ways of measuring risk for ATM
- Risks to spread and spread std. dev. 1 bp in spread 0.5bp 1bp in std. dev. 0.2bp
- Risks to yields, vols, and correlation

1 bp in $\mathrm{Y}_{2} 0.5 \mathrm{bp} \quad 1 \mathrm{bp}$ in $\mathrm{Y}_{10} 0.5 \mathrm{bp}$
1 vol pt in $\mathrm{Y}_{2} 0.5 \mathrm{bp} \quad 1$ vol pt in $\mathrm{Y}_{10} 0.1 \mathrm{bp}$
1 percentage point in correlation 0.6 bp

Spread Option - Hedging

- Either way, delta hedge spread
- When buy call, hedge by selling spread
- To sell yield spread buy $10 \&$ sell 2 yr swap
- Buy / sell 3mth forward swaps
- Buy / sell DV01-weighted amounts
- Call changes by 0.5 bp for 1bp change in spread
- If payout $\$ 10,000 / \mathrm{bp}$, call changes by $\$ 5,000$
- Buy 7.1mm 10s, 27.4mm 2s

Model Choice - Simple vs. Complex

- Advantages of simple models
- Easier to understand and implement
- Focus directly on important aspects of problem (pricing \& hedging correlation of Y_{10} and Y_{2})
- Advantages of complex models
- General model works in variety of applications (e.g. simple model might predict spreads widen without limit for long-dated options)
- No need to force problem to fit model

Convexity - Adjusting Forward Rates

- Call as expectation of payout:

$$
\mathrm{E}\left[\left(\mathrm{Y}_{10}-\mathrm{Y}_{2}\right)-\mathrm{K} \mid\left(\mathrm{Y}_{10}-\mathrm{Y}_{2}\right)>\mathrm{K}\right]
$$

- Focus on spread (underlier) itself

$$
\left(\mathrm{Y}_{10}-\mathrm{Y}_{2}\right)
$$

- Hedge spread by selling / buying bonds
- Spread is linear, hedge convex

Convexity - Adjusting Forward Rates

- Use risk neutral measure for which

$$
\begin{aligned}
& \mathrm{E}\left[\mathrm{PV}\left(\mathrm{Y}_{10}\right)\right]=\mathrm{PV}\left(\mathrm{Y}_{10}{ }^{\mathrm{f}}\right) \\
& \mathrm{E}\left[\mathrm{PV}\left(\mathrm{Y}_{2}\right)\right]=\mathrm{PV}\left(\mathrm{Y}_{2}{ }^{\mathrm{f}}\right)
\end{aligned}
$$

- Find mean of distribution for which

$$
\int_{0}^{\infty} \mathrm{PV}(\mathrm{Y}) \mathrm{g}\left(\mathrm{Y} ; \mathrm{Y}^{\mathrm{m}}, \sigma\right) \mathrm{dY}=\mathrm{PV}\left(\mathrm{Y}^{\mathrm{f}}\right)
$$

- This gives expectation of linear yield

$$
E\left[\left(\mathrm{Y}_{10}-\mathrm{Y}_{2}\right)\right]=\left(\mathrm{Y}_{10}{ }^{\mathrm{m}}-\mathrm{Y}_{2}{ }^{\mathrm{m}}\right)
$$

Convexity - Adjusting Forward Rates

- Call as expectation of payout:

$$
\mathrm{E}\left[\left(\mathrm{Y}_{10}-\mathrm{Y}_{2}\right)-\mathrm{K} \mid\left(\mathrm{Y}_{10}-\mathrm{Y}_{2}\right)>\mathrm{K}\right]
$$

- PV of call is

$$
\begin{gathered}
\mathrm{NPV}=\mathrm{DF}(3 \mathrm{mth}) s \mathrm{t}^{5}[\phi(\mathrm{~d})+\mathrm{d} \Phi(\mathrm{~d})] \\
\mathrm{d}=(\mathrm{F}-\mathrm{K}) / s \mathrm{t}^{5} \cdot
\end{gathered}
$$

- But F now uses adjusted means

$$
\mathrm{F}=\left(\mathrm{Y}_{10}{ }^{\mathrm{m}}-\mathrm{Y}_{2}{ }^{\mathrm{m}}\right)
$$

Convexity - Adjusting Forward Rates

- Adjustment is small, but can matter
- For 3 month ATM call
- 2 year 6.225 forward, 6.230 adjusted
- 10 year 6.964 forward, 6.979 adjusted
- Spread 73.8 forward, 74.9 adjusted
- Call 9.1bp off forwards, 9.7bp adjusted

Convexity - Calculating Adjustment

- Find mean of distribution for which

$$
\int_{0}^{\infty} \mathrm{PV}(\mathrm{Y}) \mathrm{g}\left(\mathrm{Y} ; \mathrm{Y}^{\mathrm{m}}, \sigma\right) \mathrm{dY}=\mathrm{PV}\left(\mathrm{Y}^{\mathrm{f}}\right)
$$

- Various methods
- Brute force numerical integration
- Approximate integrand by piece-wise quadratic
- More sophisticated approximations
- Brotherton-Ratcliffe \& Iben
- spread = ri σ^{2} T P' $/$ (2 P')

Convexity - Calculating Adjustment

- Comparison of results
- 3 month forward 2 and 10 year swaps
- Solving integral equation, 0.48bp, 1.55bp
- B-R \& I approximation, 0.48bp, 1.54bp
- 5 year forward 2 and 10 year swaps
- Solving integral equation, 10.2bp, 31.7bp
- B-R \& I approximation, 9.5bp, 32.4bp

Convexity - Hedging

- Hedge spread as before
- When buy call, sell spread
- Sell spread in delta-weighted amount
- Sell spread, buy 10s sell 2s in DV01-weighted amounts
- But now additional volatility risk
- As volatility changes, convexity changes
- Must hedge volatility exposure

Convexity - Libor-in-Arrears

- Same situation as for spread
- Libor-in-arrears payment is linear
- Payment at t is L_{t}
- Hedge is convex FRA $\left(L_{t}\right)=L_{t} /\left(1+L_{t}\right)$
- Find mean of distribution for which

$$
\int_{0}^{\infty} \operatorname{FRA}(\mathrm{L}) \mathrm{g}\left(\mathrm{~L} ; \mathrm{L}^{\mathrm{m}}, \sigma\right) \mathrm{dL}=\operatorname{FRA}\left(\mathrm{L}^{\mathrm{f}}\right)
$$

Convexity - Libor-in-Arrears

- Convexity effect is usually small
- Libor usually quarterly
- Swaps not too long
- Example
- Quarterly libor, adjustment 0.5bp at 1yr, 2.4bp at 5 yr
- Annual libor, adjustment 1.8bp at 1yr, 9.2bp at 5yr

Conclusion

- Tried to show a few applications of
- Discounting Expected Cash Flows
- Use Simplest Model Which Solves Problem
- Focus on Hedging and Managing Risks
- Managing derivatives risk
- Choosing appropriate model \& assumptions
- Focus on hedging and managing risks
- Not about high-powered mathematics

Problem 1 - Spread Option Price

Parameters for an ATM call spread option are as in the presentation:
3 mth fwd 2 year rate
6.23

3 mth fwd 10 year rate $\quad 6.96$
Forward spread
73.8bp

Spread standard deviation
46 bp
Three-month discount factor
0.9865

1. Calculate the price of the option, using the formula given in the presentation and (if needed) the following approximation for $\Phi(\mathrm{d})$:

$$
\mathrm{NPV}=\mathrm{DF}(3 \mathrm{mth}) \mathrm{st} \cdot[\phi(\mathrm{~d})+\mathrm{d} \Phi(\mathrm{~d})]
$$

$$
\mathrm{d}=(\mathrm{F}-\mathrm{K}) / \mathrm{st}{ }^{5} \quad \phi(\mathrm{~d})=\exp \left(-\mathrm{d}^{2} / 2\right) /(2 \pi)^{5}
$$

$$
\Phi(\mathrm{d})=\exp \left[-\frac{(83|\mathrm{~d}|+351)|\mathrm{d}|+562}{703 / \mathrm{d} \mid+165}\right] / 2 \quad \Phi(\mathrm{~d})=1-\exp \left[-\frac{(83|\mathrm{~d}|+351)|\mathrm{d}|+562}{703 /|\mathrm{d}|+165}\right] / 2
$$

Problem 2 - Hedging Spread Option

What precisely is the hedge to the spread option?
Specifically, assume you bought an ATM call with payout $\$ 10,000 / \mathrm{bp}$. In general to hedge a (bought) call you must sell the underlier. In this case, you must sell the 10 yr minus 2 yr yield spread. To sell the yield spread you must buy the 10 year and sell the 2 year forward swaps.

Answer the following specific questions:

1. What is the $\mathrm{P} \& \mathrm{~L}$ on the option if the spread rises by 1 bp ?
2. What is the $\mathrm{P} \& \mathrm{~L}$ on a $\$ 1 \mathrm{~mm}$ position in the 10 year forward swap (with a DV01 of \$701.70)? On the 2 year (with DV01 of $\$ 182.80$)?
3. How much should you buy of the 10 year and sell of the 2 year?

Problem 3 - Spread on libor-in-arrears

What is the spread for a libor-in-arrears swap? Specifically, consider the in-arrears side of a 5 year swap against 1 year libor-in-arrears. The forwards and adjusted forwards are as below:
Yr of

Adj
Disc

pmt	Fwd	Vol	Fwd	Sprd	Fact	P'	P'
1	6.580	20%	6.596	1.7	0.9454	0.880	0.0165
2	6.519	20%	6.553	3.4	0.8863	0.881	0.0165
3	7.037	20%	7.096	5.9	0.8314	0.873	0.0163
4	7.294	20%	7.380	8.6	0.7757	0.869	0.0162
5	7.306	20%	7.416	11.0	0.7224	0.868	0.0162

1. Check the Brotherton-Ratcliffe \& Iben approximation for year 5 .
2. Calculate the NPV of the spread (the up-front benefit of in-arrears)
3. Calculate the approximate spread per year, if the 5 year swap rate is 6.656\%ab.

Problem 3 - Answers

Yr of pmt	Adj Fwd	Sprd	Disc Fact	NPV (sprd)	B-R\&I	NPV(sprd)
1	6.596	1.7	0.9454	1.59	1.6	1.54
2	6.553	3.4	0.8863	2.98	3.2	2.83
3	7.096	5.9	0.8314	4.93	5.6	4.62
4	7.380	8.6	0.7757	6.67	7.9	6.15
5	7.416	11.0	0.7224	7.91	9.9	7.19
			bp up-front	24.09		22.32
		bp/yr approx	5.82		5.39	
		bp /yr act	5.70		5.28	

