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INTRODUCTION 
 
 This paper develops an optimizing model of individual labor supply that admits 
reasonable technological and informational constraints.  It concentrates on the all-or-
nothing employment decision.  Coleman (1984, chapter 3, and 1985b) presents evidence 
that most of the cyclical fluctuations in aggregate hours worked are the result of 
movements in and out of employment rather than marginal adjustments in the hours of 
work.  Given this evidence, it is reasonable to concentrate on the employment decision.  
Focusing on individuals' participation decisions, however, means that one cannot use a 
representative agent to model the aggregate behavior; individuals' behavior must be 
correctly aggregated.  This model addresses aggregation. A result of this model is that the 
technological and informational constraints (probabilities of finding job openings) enter 
the worker's decision problem.  This model provides a framework for analyzing both the 
behavioral response and the welfare effects of changes in these constraints.  In a general 
equilibrium setting, these constraints may act as "prices" to equilibrate the labor market. 
 
 This model views individual behavior in the labor market as a process of moving 
between labor force activities.  This distinguishes it from the standard approach, where 
the outcome (employment or unemployment) and not the process (movement between 
employment and unemployment) is modeled.  Given the substantial monthly gross flows 
between labor force states (see, e.g. Marston, 1976; Abowd and Zellner, 1985), this is a 
natural approach to the labor market.  Agents are in a stochastic environment and make 
decisions whether they want to work or not.  When an agent decides he wants to work, 
however, he must search for a job.  Jobs at the going wage cannot be found immediately, 
and an agent must spend time and (possibly) money looking for a firm with an available 
job.  The probability of finding an available job in the next instant, if less than unity, acts 
as a constraint on labor supply; a worker would work at the current wage but is unable to 
do so because jobs are not instantaneously available.  This is a formal model of frictional 
unemployment, although one could also label such unemployment involuntary.  (For 
simplicity the model focuses on employment, and the hours decision is ignored.  When 
working all agents work at the same intensity.  For present purposes this is acceptable.)  
 
 This model is closely related to the analysis of the duration of unemployment. 
(See, e.g. Kaitz, 1970; Salant, 1977; Nickell, 1979; Heckman and Singer, 1984a, 1984b.)  
In those papers the focus is more on the empirical distribution of leaving times for a 
single spell of unemployment, rather than a theoretical model of the decision process.  
The relationship between the empirical distribution and models of the decision process is, 
however, quite close.  The regularities uncovered in the empirical studies provide both a 
guide and a check on theoretical work.  In addition, the econometric techniques used 
often transfer to the estimation of parameters of the theoretical models.  As Heckman and 
Singer (1984a) have pointed out, the functional forms used for hazard functions in 
empirical studies sometimes have little theoretical foundation.  In the best of all possible 
worlds, economic models of the decision process provide functional forms for the 
hazards and often restrictions across hazards for different states.  (As Heckman and 
Singer have also pointed out, model derived hazards often have the disadvantage of being 
overly restrictive, or not being in closed form and thus computationally burdensome.)   
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The model presented in this paper gives hazards as functions of the parameters of the 
worker's optimization problem.  The estimation of these parameters proves to be quite 
easy.  Research in the area of dynamic discrete choice models is active.  Other models 
that deal with employment versus non-employment decisions are Lippman and McCall 
(1976); Toikka (1976); Burdett and Mortensen (1978a, 1978b).  The present model is a 
form of the search models discussed in Lippman and McCall, and is directly related to the 
three state model of Toikka.  Rust (1984) provides a good discussion of estimation of a 
general class of controlled discrete choice models (to which, however, this model does 
not belong).   Some general characteristics tie all the dynamic discrete choice models 
together.  
 

• They model the choice process, with the outcomes being determined 
probabilistically.  

 
• Changes occur between discrete states (say an individual going from employment to 

unemployment). 
 

• The models are dynamic, with decisions occurring through time.  Although not true 
of all models mentioned above, in this model changes can occur at any point in 
time, so there is no natural time unit (weeks, say, or months).  

 
• Various economic factors affect the process.  It is the purpose of theory to specify 

how these affect the process, and thereby the realized outcomes.  
 
 When specified in continuous time, these are examples of general discrete-state, 
continuous-time, stochastic models.  Models of this sort have been used widely in the 
physical sciences to study, e.g., radioactive decay and chemical reactions.  The general 
formulation is 
 

• there are  s  states indexed by i, i = 1,2, ..., s. 
 

• the probability of occupying state  i  at time  t  is  pi(t). 
 

• there is a transition rate at time  t  between pairs of states.  This is called qij(t), and is 
defined as the limit, as ∆ approaches zero, of the ratio of the transition probability to 
∆: 

 
qij(t) = lim∆→0P[i→j in time ∆| in i at t] / ∆ 

 
• the probabilities of occupying states,  pi(t),  are governed by a system of differential 

equations: 
 

dpi(t) / dt  =  Σi
s pj(t)qji(t) 

 
 with  qii(t) = -Σj qij(t). 
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In matrix notation, this is 
 

p'(t) = p(t)Q(t) 
 
where  p(t)  is the row vector of state probabilities at time  t.  The economic models 
mentioned above model all or some of the elements of the transition matrix  Q.  This 
model does the same.  The elements of  Q  are hypothesized to be the result of agents 
solving a continuous time optimization problem in a stochastic environment.1 
 

                                                 
1 The model in this paper is actually a continuous-state, continuous-time, stochastic model.  In general the 
mathematics necessary to analyze such models is more difficult than that for discrete-state models.  In 
particular, the system of differential equations for  pi(t)  now becomes an integro-differential equation on 
the function  p(x,t),  where  x  is the state variable. I largely ignore this problem because simplifications of 
the model, used in specific applications, reduce the problem to a discrete-state problem. 
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DEVELOPMENT OF A DYNAMIC MODEL OF LABOR SUPPLY 
 
 In this model workers face a known wage, but must wait for an offer to arrive. A 
worker knows the distribution of what is available, but does not know which of several 
firms currently has an opening. A worker who wants a job visits an employment office 
periodically (say once a week, or at random times that average out to once a week) to find 
out if a job is available.  When a job is available the worker takes it.  If a job is not 
available, he must return later.  (Staying at and visiting the employment office costs, so 
workers visit at discrete times.)  People have some control over their search intensity 
(how often they visit the employment office), by choosing to be unemployed or out of the 
labor force, but the probability of finding a job opening is exogenous.  (Firms have 
control over how many job openings there are by posting job notices at the employment 
office more or less frequently.)  In this model both the wage and the probability of 
finding a job enters the worker's value function.  The standard labor supply model 
assumes that only the wage matters:  Any worker who wishes to work instantaneously 
takes a job, and the wage is the only variable entering into the labor supply and labor 
demand decisions.  In contrast, in this model the labor supply decision depends on both 
the offered wage and the probability of being hired.  Workers face technological 
constraints on their labor supply. 
 
 The model is based on individual behavior, and so any aggregate behavior must 
be derived by correctly aggregating from the micro to the macro level.  Each individual 
solves the same optimization problem, but at any point in time individuals have different 
opportunities; i.e. different draws of market and non-market benefits.  This endogenously 
generates heterogeneity (both observed and unobserved), which means that a 
representative agent approach to aggregation will not work.  In addition this model 
focuses on the all-or-nothing decisions of employment and unemployment.  The 
aggregation problems must be faced.  Although this makes the mathematics of the model 
more difficult, it provides a richer and more fruitful model. 
 
 The worker can be in one of three labor force activities: working, unemployed 
(searching), or not in the labor force (NLF). A worker receives instantaneous utility of 
consumption in each activity.  In addition, the stochastic environment generates new 
opportunities, which then lead to future expected benefits (resulting from either 
continuing in the same activity or changing to another).  The utility and future 
opportunities are: 
 
1. employment 

• Instantaneous benefit is utility of consuming wage: u(w). 
• Future opportunities are 1) layoff into unemployment or 2) arrival of high non-

market benefits and quit into NLF. 
 
2. Unemployment 

• Instantaneous benefit is the disutility (cost) of searching: u(-c). 
• Future opportunities are 1) new job offer and 2) new non-market benefits high 

enough to induce dropping out of the labor force. 
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3. NLF 

• Instantaneous benefit is the utility of consuming non-market benefits: u(x). 
• Future opportunities are 1) new job offer which may induce transition to 

employment (depending on current value of non-market benefits and 2) new non-
market benefits which may be low enough to induce transit to unemployment. 

 
New wage and non-market offers are drawn from known distributions.  Layoffs and new 
offers arrive at Poisson-distributed random times.  These distributions and arrival rates 
may change, however, according to the state of the economy. 
 
 The mathematical state of the system occupied by the worker is given by the 
values of the wage (w), the non-market benefits (x), and the state of the economy (z).  
New  (w,x,z)  states are assumed to arrive at Poisson distributed times.  In other words 
the probability of an arrival in a small period  ∆t  is equal to  ∆t+o(∆t).  These arrival 
probabilities are: 
 
1. NLF benefits arrive at rate  µ  independent of the worker's activity.  When an offer X   

arrives, it is drawn from the (known) distribution  G(x),  which may vary with the 
state of the economy, z. 

 
2. Job offers arrive at rate  λ3  in the search activity, λ2  in the NLF activity, and λ1 in 

employment. λi may vary with the state of the economy, z.  When a new wage offer 
W   arrives, it is drawn from the (known) distribution  F(w)  (which again may 
depend on z, and in addition may depend on the current wage, w). 

 
3. Layoffs arrive at the rate  δ  when a worker is employed.  Layoff is into the 

unemployment state.  Layoff rates may depend on z, the state of the economy. 
 
4. New states of the economy arrive at rate  ν.  When a new state Z(z), arrives, it is 

drawn from the distribution  Fz(z),  which may depend on the current value of z, but 
not on any worker's  (w,x). 

 
   The worker has utility of consumption  u(c).  For simplicity the worker is not allowed 
to borrow or lend, and so must consume everything immediately.  When a worker is laid 
off, he receives unemployment benefits until he either transits to NLF or finds a job.  The 
current rewards, therefore, are      
 

1. u(w) when employed with wage w     
2. u(x) when NLF with benefits x     
3. u(k-c) when laid off and receiving unemployment benefits     
4. u(-c) when unemployed (having entered from NLF)       

 
 The value of being employed, NLF, and unemployed can be written as  V1(w)  
V2(x),  V3(k).  The optimal value can be written as    
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V(w,x,k,z) = Max[V1(w,z),V2(x,z),V3(k,z)]. 
 
The task now is to formulate expressions for  V1,  V2,  V3,  and then prove that the 
problem is well defined and has a solution.  To start with employment, the current value 
is  V1(w,z).  Bellman's equation states that today's value must equal the discounted 
expected value from an instant in the future.  In an instant  ∆t  the probabilities of arrival 
are      
 
1. µ∆t+o(∆t)  that a new NLF offer  X  arrives (expected value EV(w,X,0,z))     
2. δ∆t+o(∆t)  that a layoff occurs (value V(0,0,k,z))  
3. ν∆t + o(∆t)  that a new state of the economy,  Z,  arrives (value V(w,0,0,Z))    
4. λ1∆t + o(∆t)  that a new wage offer  w'  arrives (value  V(max(w,w'),0,0,z))     
5. 1-µ∆t-δ∆t-λ1∆t-ν∆t+o(∆t) that nothing happens (value V1(w,z))    
 
Writing this down gives    
 

V1(w,z) = (1+r∆t)-1[u(w)∆t + µ∆tEV(w,X,0,z) + δ∆tV(0,0,k,z)  
+ ν∆tEV(w,0,0,Z) + λ1∆tEV(max(w,W),0,0,z)  

+ [1-(µ+δ+ν+λ1)∆t]V1(w,z)] + o(∆t) 
 
Rearranging and letting  ∆t→0  gives    
 

(1) V1(w,z) = (µ+δ+ν+λ1+r)-1[u(w) + µEV(w,X,0,z) + δV(0,0,k,z) 
+ λ1EV(max(w,W),0,0,z) + νEV(w,0,0,Z)] 

 
Similar arguments for  V2  and  V3  gives    
 

(2) V2(x,z) = (µ+λ2+ν+r)-1[u(x) + µEv(0,X,0,z) + λ2EV(W,x,0,z) 
+ νEV(0,x,0,Z)] 

 
(3) V3(k,z) = (µ+λ3+ν+r)-1[u(k-c) + µEV(0,X,k,z) + λ3EV(W,0,k,z) 

+ νEV(0,0,k,Z)] 
 
Finally, the optimized value,  V(w,x,k,z)  is    
 

(4) V(w,x,k,z) = Max[V1(w,z),V2(x,z),V3(k,z)] 
 
Under relatively mild conditions,  V(w,x,k,z)  is well defined, continuous, and increasing 
in  (w,x)  for each z.  In particular,  V(w,x,k,z) exists and is well behaved for  u(w)=w,  
i.e. for wealth maximization.   See appendix A for a proof. 
 
 What is important for the transition process between activities is the probability 
that a particular offer will be either accepted or rejected.  If the distributions  F(w)  and  
G(x)  do not depend on the current  (w,x)  value (so that offers are uncorrelated) the 
model generates a reservation wage function for each z.  When employed at wage  w, a  
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worker will exit to NLF whenever he receives an offer above a critical value  x*(w).  This 
is the reservation value x*(w).  The function  x*(w)  is determined by setting the value of 
a job equal to the value of NLF: 
 

(5a) V1(w,z) = V2(x,z) 
 
For a given w   (and z)  this gives a unique x,  x*(w,z), since  V1(w,z)  is not a function of  
x,  and  V2(x,z)  is increasing in  x. 
 
 The lowest wage observed will be that wage which makes a person indifferent 
between working and searching further; i.e., w*0  is the solution to  
 

(5b) V1(w,z) = V3(0,z)  . 
 
Any wage above  w*0  will induce a searcher without unemployment benefits to take a 
job.  Similarly, any wage above  w*k,  the solution to 
 

(5c) V1(w,z) = V3(k,z) 
 
will cause a searcher with unemployment benefits to take a job.  The lowest acceptable 
NLF offer,  n*0,  solves     
 

(6a) V2(x,z) = V3(0,z) 
 
and  n*k  solves   
 

(6b) V2(x,z) = V3(k,z)  . 
 
 When wage offers are correlated, there may not be a reservation wage function.  
Refer back to (5a).  For any  x,  there will be a set of  w  values,  {w:V2(x,z)<V1(w,z), x 
and z given},  which cause transition from NLF to employment.  The set may not be 
connected.  For example, a low wage offer may signal nothing about future offers, and so 
will be accepted.  Similarly, a high offer may signal nothing about future offers, and so 
also will be accepted.  Some intermediate offers, however, may indicate that there is a 
high probability of a yet higher offer, and so will not be accepted in anticipation of these 
higher offers.  Essentially,  V2(x,z)  is then a function of the current wage offer, in that 
the current wage offer, while it cannot be accepted once rejected, helps predict future 
wage offers.  Thus (5a) becomes  V1(w,z)=V2(x,z,w),  so that both  V1 and V2  are 
functions of the current wage.  The argument that  V1  is increasing in  w  and  V2  does 
not depend on  w  no longer holds.  For the rest of the paper, except where noted, it will 
be assumed that wage offers are not correlated.  In addition, unemployment benefits will 
be assumed zero, so that the reservation value  x*k  disappears. 
 
 This model is related to other models of discrete choice over time, such as Toikka 
(1976) and the class of models discussed in Rust (1984).  There are important 
distinctions, however.  First, this model is stated in continuous time, Toikka and Rust are 
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in discrete time.  Second, and more importantly, new wage and values of non-market 
time arrive independently, and when a non-market offer arrives in the job state, the job is 
still retained as an option.  In Toikka's model, both wage and non-market offers arrive 
simultaneously, and the worker must choose between the better of the two.  Toikka's 
formulation has the result that the future payoff is a constant independent of the current 
wage or non-wage value, while in the present model the future payoff depends on the 
current wage and non-wage values.  In a model where wage and non-wage offers arrived 
simultaneously, the value of a job would be something like: 
 

V1(w) = (γ1+r)-1[u(w) + γ1EV(W,X)] 
 
The term  γ1EV(W,X)/(γ1+r)  represents the future payoffs, and does not depend on the 
current value of  w  (although it does depend, through  γ1,  on being in the job activity).  
The constant  EV(W,X)  appears in the expression for the value of each activity.  This 
considerably simplifies the expressions for reservation wages.  It allows one to calculate 
comparative statics results, but at the price of the unrealistic assumption that offers arrive 
simultaneously and that the future payoff is independent of the current wage.  Assuming 
simultaneous arrivals also assures that model transition rates depend only on observables, 
such as the current wage or the current activity -- employment, search, or NLF.  Rust 
(1984) imposes assumptions which assure that transition rates do not depend on 
unobserved state variables.  In the present model with independent arrivals, both the 
current wage and unobserved non-market values become state variables.  In other words, 
unobserved heterogeneity is generated.  Transitions are Markovian conditional on these 
state variables, but transitions are not Markovian conditional on the wage or current 
activity (employment, unemployment, or NLF) alone.  The model with independent 
arrivals can generate declining hazards if one conditions on the current activity alone.  
For example, the hazard for exit from unemployment will be declining if those with 
unemployment benefits have a lower exit rate and so remain unemployed longer; the 
classic mover-stayer problem. 
 
 The solution of the worker's optimization problem gives the value of being in any 
particular state, and a set of decision rules on when to transit from one state to another.  
The decision rules are summarized by a set of reservation wages: 
 

x*(w,z) = reservation value for transition from job to NLF  This is the minimum 
value of non-market benefits which induces  worker being paid  w  to quit and 
drop out of the labor force  (When wage offers are correlated there will be a 
possibly disconnected acceptance set {x:V1(w,z)>_V2(x,z)w  and z given}.)  This 
can also be written as  w*(x,z), and then represents the minimum acceptable wage 
when in NLF with value of non-market time  x. 

 
x*0 = reservation value for transition from unemployment to NLF.  This is the 

minimum value of non-market benefits which induces an unemployed worker to 
drop out of the labor force.  It will in general depend on z. 

 
w*0 = reservation value for transition from unemployment to job.  This is the 
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minimum acceptable wage offer.  It will depend on  z. 
 
Behavior is governed by the following transition rates: 
 

eu:  job to unemployment = layoff rate (exogenous)     
en: job to NLF = (rate of arrival of NLF offers) * P[non-market offer is above the 

reservation value x*(w,z)]     
ue: unemployment to job = (rate of arrival of job offers in the unemployment 

state)*P[W≥w*0]     
un: unemployment to NLF = (rate of arrival of non-market offers) * P[a given non-

market offer is above the reservation value  x*0]     
ne: NLF to employment =  (rate of arrival of job offer in the NLF state) * P[the 

current non-market benefits are below x*(w)]     
nu: NL to unemployment = (rate of arrival of non-market offers) * P[a given non-

market offer is below the reservation value x*0]    
 
Transitions between activities (employment, unemployment, and NLF) are the basic 
behavior that this model describes.  The transition rates are the product of exogenous 
arrival rates for new offers, and endogenously determined decision rules which determine 
when the offer is acceptable (is above the reservation value).  The observed behavior is 
determined by the interaction of the chosen reservation wages and the exogenous arrival 
rates.    
 
The optimization problem enters the transition process through the following 
probabilities involving the reservation wage functions (or acceptance sets in the case 
where reservation wages do not exist):      
 

(7) P[X<x*0] = G(x*0) = q0 
 

P[X>x*(w)] = 1 - G(x*(w)) = q2(w) 
 
For expositional simplicity, I will take the case of  z  fixed and a single wage with 
uncorrelated offers; the distribution  F(.)  has mass p   at w   and  1-p  at 0.  The basic 
results for identification and estimation will hold for any discrete distribution of wages.  
(The case of a continuous wage distribution will be left for future research.  Although the 
value function and the optimal policy exists, as stated previously, estimation is more 
difficult.  The process is then a continuous-state, continuous-time stochastic process.) 
 
 The solution of the worker's optimization problem generates transition 
probabilities.  The observed behavior, however, consists of actual transitions between 
labor force activities.  The task, then, is to go from the transition probabilities to the 
probabilistic behavior of the individual, and from there to the aggregate behavior.  In this 
simplified version of the model unemployment behavior is the same no matter how one 
entered or how long one has been there.  For NLF, however, behavior depends on the 
(unobserved) current values of  x.  For transitions between NLF and unemployment what 
matters is where a new  X  offer is relative to  x*0.  For  x<x*0,  no one stays NLF, and 
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workers prefer to be unemployed.  When employed, what matters is where a new X   
offer is relative to the reservation value  x*(w).  For  X>x*(w),  the worker quits into 
NLF, while for  X≤x*(w),  the worker rejects the offer and stays with the job.  Similarly, 
someone NLF accepts a job as long as his current value of non-market benefits is below  
x*(w). 
 
 The probability of transition from one activity into another is the product of the 
probability that the exogenous state (the  x  value) changes, times the probability that the 
new state will be such as to make a transition optimal.  For example, in a small period of 
time  ∆t,   the probability of a new non-market offer is  µ∆t+o(∆t).  When currently 
employed at wage  w,  the probability that the offer is high enough to cause transition 
from employment to NLF is  P[X>x*(w)].  The probability of a transition from 
employment to NLF in time  ∆t  is  µP[X>x*(w)]∆t+o(∆t).  Similarly, the probability of 
transition from e   to u   is  δ∆t+o(∆t).  From this one can infer that the exit rates from 
employment (wage  w)  are: 
 

eu = rate (employment to unemployment) = δ     
en = rate (employment to any NLF state) = µP[X>x*(w)] = µq2     
en(x) = rate (employment to NLF with x) = µg(x)I[x>x*(w)]    

 
Similarly the exit rates from unemployment and NLF are    
 

ue = λ3p  
un = µP[X>x*0] = µ(1-q0)  
un(x) = µg(x)I[x>x*0]  
ne(x) = λ2pI[x<x*(w)]  
nu = µP[X≤x*0] = µq0  
nn(x1,x2) = µg(x2)I[x2>x*0]    

 
 Behaviorally, the continuum of NLF states collapses into two states,  n1  and  n2.   
The  n2  state includes those who are truly out of the labor force, and will not take a job if 
offered.  The  n1  state, however, includes people who are not searching intensively for a 
job (and so do not report themselves unemployed) but would take a job if offered.  This 
corresponds to both the common feeling that the distinction between unemployment and 
NLF is artificial, and to the Bureau of Labor Statistics (BLS) definition of 
unemployment.  This model predicts that some of those NLF (the n1-types) will behave 
like those unemployed, while others (the n2-types) are distinctly different from those 
unemployed.  Essentially, the difference between n1-types and those unemployed is a 
difference of degree -- the intensity of job search.  The BLS defines unemployment as 
those available for work and who "had made specific efforts to find employment during 
the prior 4 weeks." (BLS 1980, p.1)  Thus,  n1  types are just those who are searching at a 
low intensity.    
 
 The transition rates generate a set of simultaneous linear differential equations 
which describe the probabilistic behavior of an individual.  The differential equations 
(still for a single wage and fixed z) are: 
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  e' = -(δ+µq2)e + λ3pu + λ2pn1 
 
  u' = δe - [λ3p + µ(1-q0)]u + µq0n1 + µq0n2 
 
  n1' = µ(1-q0-q2)u - [λ2p + µ(q0+q2)]n1 + µ(1-q0-q2)n2 
 
  n2' = µq2e + µq2u + µq2n1 - µ(1-q2)n2 
 
The probabilities of being in each activity can be written as    
 
(8)    p(t) = [et, ut, n1t, n2t] 
 
and then the differential equations can be written compactly as     
 
(9)     p' = pQ  . 
 
The transition matrix is  Q: 
 
 (10)   _ e  u  n1  n2   _ 
  |          | 
    e | -(δ+µq2)  δ  0  µq2    | 
  |          | 
    u | λ3p -(λ3p+µ(1-q0))   µ(1-q0-q2)  µq2    | 
   |          |  
    n1 | λ2p  µq0 -(λ2p+µ(q0+q2)) µq2    | 
   |          |    
    n2 |_ 0  µq0 µ(1-q0-q2)      -µ(1-q2) _|      
 
 
These are the parameters that enter in the differential equations generating observed 
transitions, and are the parameters of the model which must be estimated. 
 
 When the wage distribution consists of two wages,  (w1,w2),  the transition matrix 
is 6x6.  The wage is now a state variable, so that employment actually consists of two 
distinct groups, those with  w1  and those with  w2.  The continuum of NLF states 
collapses into three states: n1-types who will accept any job if offered, n2-types who will 
accept a  w2  offer but reject a  w1  offer, and n3-types who will reject any job offer.  For 
example, the differential equation governing the behavior of a person currently employed 
at wage  w2  is 
 
 e'2 = λ1f(w2)e1 - [δ+µP[X>x*(w2)]]e2 + λ3f(w2)u + λ2f(w2)(n1 + n2)  . 
 
Naturally, this assumes that the lower wage (w1) is such that individuals with zero value 
of non-market time (those unemployed) will choose to work at that wage.  If this were 
not the case, the model would be equivalent to that discussed above, with wages of 0   
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and  w. 
 
 For a discrete wage distribution with finite or countably infinite points of support, 
there will be some lowest acceptable wage,  w1.  Corresponding to each wage  wi  at or 
above  w1, there will be a reservation value of non-market time,  x*(wi).  Any individual 
with  x*(wi-1)<x≤x*(wi)  will accept a wage offer of  wi  or above, but reject offers below  
wi.  This will define  ni  types.  In other words, there will be as many reservation  x  
values as there are acceptable wage offers, and as many NLF states as there are 
acceptable wage offers.  As will be seen below, this imposes as many restrictions on the 
distribution of non-market times, G(x), as there are acceptable wage offers. 
 
 The solution to (9) (for a discrete distribution F(.)) can be written formally as 
 

(11) p(t) = p(0)exp{Qt} 
 
where the matrix exponential is defined by   
 

(12) exp{A} = Σ Ai / i! 
 
(See Braun, 1978.) 
 
 Equation (11) gives the probability of being in different activities at any time in 
the future.  For example, if a person was employed at time zero and there is a single 
acceptable wage, the probability of being in any activity in the future would be    
 

p(t) = [1 0 0 0] exp{Qt} 
 
More importantly, since everyone follows equation (9) in his transitions between 
activities, equation (9) describes how the proportions of people in each activity changes.  
Equation (11) give the aggregate proportions of people in activities at  t  when the 
proportion at zero,  p(0),  is known.   The steady state occurs when  p'=0.  The solution to  
pQ=0  gives the steady state. 
 
 The differential equations (8-10) hold for  (w,z)  fixed.  The values  n1  and  n2,  
however, depend on  (w,z)  in the following way.  The density of non-market  (x)  values 
in the population at time  t  is  n(x,t).  The  n1-types are those with  x  between  x*0  and  
x*2:  {x: x*0 < x < x*2}.  Thus,     
 

∫= 2

0

x

x1 t)dxn(x,(t)n . 

 
The differential equation governing the population density  n(x)  (suppressing time) is 
 

n'(x) = µg(x)[I{x>_x*2}e + u] - [µ + λ2pI{x<x*2}]n(x)  
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+ ∫
∞

0x
n(x)dxg(x)µ  

 
where  g(x)  is the density of non-market value offers, and  I{⋅}  is the indicator function, 
i.e.  1  when the condition is true, and  0  when it is false.  Integrating over n1-types and 
n2-types separately gives the differential equations (1c) and (1d).  In other words for fixed  
(w,z)  the differential equation governing the number of n1-types depends only on the 
total number of n1-types and n2-types, and not their distribution.  For given  (w,z)  this 
reduces the problem from infinite-dimensional (the integro-differential equation above 
together with analogous equations for  e  and  u)  to finite dimensional (the set of four 
simultaneous equations 8-10).  Such a reduction is not possible when  (w,z)  vary, 
because the limits of integration,  x*0  and  x*2  (the individual's decision rules) depend 
on  (w,z).  When  (w,z)  change, the new values of  n1(t)  and  n2(t)  depend on the density  
n(x,t).  When  (w,z)  changes,  n1(t)  and  n2(t)  are discontinuous. 
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IDENTIFICATION AND ESTIMATION 
 
 The identification of this model will be discussed only in a stationary 
environment.  In other words, it will be assumed that  z  is fixed, and that the 
environment is stationary over time.  Even for fixed  z,  identification and estimation of 
this model is delicate.  First to deal with identification; i.e. given perfect data, can one 
hope to recover the parameters?  (For expositional purposes I will focus on the case of a 
single acceptable wage.  The arguments, however, hold for a general discrete wage 
distribution.)  If the elements of the matrix  Q  above could be directly observed, the 
model would be over-identified; there are 12 independent transition rates but only 6 
parameters (δ, µ, q0, q2, λ3p, λ2p).  This requires the observation of the current wage and 
the value of non-market time.  In fact, the elements cannot be observed for two reasons.  
First, one often does not have the exact time of transition, which is what one requires for 
directly estimating the elements of  Q.  More usually, one has a panel of people with their 
state at the beginning and end of a fixed time period, but no information on intermediate 
transitions.  Second, the two NLF states (n1 and n2) cannot be separated - only their sum  
n=n1+n2  is observed.  This introduces unobserved heterogeneity (generated by the 
model) into the transition process.    
 
 Say that one did in fact have continuous observations, but still could not 
distinguish n1-types from n2-types.  In this case the observed transition matrix is  Q*, 
given by (13) 
 
 (13)  _  e  u  n  _  
  |          | 
 e |        -(δ+uq2)  δ  µq2    |  
  |          |  
 u |  λ3p -(λ3p+µ(1-q0))  µ(1-q0)    |  
  |          |  
 n |   (n1/n)λ2p  µq0    -((n1/n)λ2p+uq0)   |  
  |_        _|  
 
Note that this matrix is definitely not Markovian, because it includes the ratio  n1/n.  
Nonetheless, a number of parameters can be identified directly from the matrix Q*:  δ, 
λ3p, µ, qo, q2.  The only parameter that cannot be identified directly is  λ2p.  (This seems 
to apply to the situation where only panel data are available also.)  In steady state, 
however,  n1  and  n2  are known functions of the parameters, and so in the steady state  
λ2p  can be solved for.  
 
 Usually a transition matrix over a finite period of time, say one month, is 
observed.  If one could separate  n1  and  n2,  the observed monthly transition matrix 
would be 
 

(14) P(1) = [pij] 
 

where  pij = (number who started in  i  and ended in  j) / (number who started in j). 
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This corresponds to the finite period transition matrix generated by the intensity matrix 
Q: 
 

(15) P(1) = P(0)exp{Q} 
 
 where  P(0) = I, the identity matrix. 
 
 The essence of the problem is calculating the matrix logarithm: 
 

P(1) = P(1) = eQ 
 

Q = ln P(1) . 
 
This is not as trivial as might appear, because the logarithm of a matrix may give 
multiple, even complex roots; the elements of  Q  obviously should not be complex.  
Singer and Spilerman (1976a, 1976b) give specific conditions under which the equation  
P(1)=eQ  is invertible.  Specifically, sufficient conditions are that the eigenvalues  γi  of  
P(1)  must satisfy  0<γi≤1,  they must be real and distinct, and  P(1)  must satisfy  
|P(1)|>0.  In this case    
 

Q = [P(1)-I] - [P(1)-I]2/2 + [P(1)-I]3/3 - ... 
 
The full problem is discussed by Singer and Spilerman.  The present problem is 
somewhat more difficult, however, since the full matrix  P(1)  is not actually observed.  
In general the sufficient conditions quoted above (or the necessary conditions given in 
Singer and Spilerman) may not be satisfied.  In that case there is no unique real matrix Q   
which satisfies (15).  If there is no  Q  matrix which satisfies (15), then the model, 
although theoretically identified, is being confronted with data with which it is 
inconsistent.   For a wage distribution with finitely many acceptable wages, the argument 
above carries through with no change.  The wage is a state variable, and must be 
observed together with the value of non-market time.  Note, however, that the mass of the 
wage distribution below the minimum acceptable wage (1-p in the case of a single wage) 
cannot be identified except by assuming a functional form for the wage distribution.  In 
Flinn and Heckman (1982) or Heckman and Singer (1984b), this is referred to as a 
"recoverability" condition.  The shape of the wage distribution above the minimum 
acceptable wage can be estimated non-parametrically, but 1-p, the mass below the 
minimum acceptable wage, can only be estimated by assuming a functional form. 
 
 Usually one does not observe the value of non-market time, and so cannot 
separate n1-types from n2-types.  In this case (with a single acceptable wage) the observed 
finite period transition matrix is    
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   _      _  
   | pee  peu  pen   |  
   |        |  
(16) P*(1)   =    |   pue  puu  pun   |  
   |        |  
   |_  pne  pnu  pnn  _|   
 
with  pij  as above with the two activities  n1  and  n2  collapsed into  n.  The matrix  P*(1)  
is generated by the equation    
 

(17) P*(1) = P*(0) exp{Q(A)} B 
 
where 
         _    _ 
  _     _  |  1 0 0   |  
  |   1 0 0 0   |  |      |  
  |       |    |   0 1 0   |     
P*(0) =   |   0 1 0 0   |  B =  |      |  
  |       |  |   0 0 1   |  
  |_  0 0   n1(0)/n(0) n2(0)/n(0) _|  |      |  
         |_  0 0 1  _|   
 

n1(0)  = proportion of people in  NLF 1 at time zero (unobserved)  
n2(0)  = proportion of people in  NLF 2 at time zero (unobserved)  
n(0) = proportion of people in NLF at time zero (observed). 

 
 The problem is to solve for  Q  from  P*(1).  In the steady state,  n1(0)  and  n2(0)  
are constant, known functions of the parameters  A=(δ, µ, qo, q2, λ2p, λ3p).  (Specifically,  
n2=q2, n1=n-q2.).  When these are substituted into  P*(0),  then  P*  can be written strictly 
as a function of the parameters  A: P*(1;A).  The parameters  A  can be adjusted until the 
calculated  P*(1;A)  equals the observed  P*(1);  in other words  A  can be solved by 
solving for the zero of  P*(1)-P*(1;A).  (For finitely many acceptable wages the argument 
easily carries through.)  It does not seem possible, a priori, to guarantee that a unique 
solution exists.  For observed gross-flow data that I have examined, however, unique 
solutions do seem to exist.    
 
 As an alternative to assuming that the system is in steady state (for the case of a 
single acceptable wage), one can identify the model conditional on a value of  
π(0)=n2(0)/n(0),  the number of n2-types as a proportion of the number NLF.  In either 
case, identification obtains because of the non-linear restrictions across the elements of  
Q.5   
 
 The worker's optimization problem imposes extensive non-linear restrictions 
across the elements of the matrix  Q.  Examining (10) shows that the form of the worker's 
optimization problem imposes non-linear restrictions across elements of the transition 
matrix.  These restrictions are relatively easy to incorporate; the restrictions can be 
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expressed analytically.  In addition to those apparent in (10), however, there are 
additional restrictions imposed by the solution of the worker's problem.  Imposing these 
requires the solution of a functional fixed point problem.  As is apparent in Rust's (1984) 
discussion of this type of problem, this makes estimation considerably more difficult, 
both econometrically and computationally.  In this model the problem simplifies in two 
important ways.  Research is currently being undertaken to asses whether these 
simplifications carry over to other models   
 
 The probabilities  q0  and  q2  are not actually parameters, but rather depend on the 
solution of the worker's problem: 
 

q0 = P[X ≤ x*0] 
 

q2 = P[X > x*2] 
 
The underlying distribution of non-market times,  G(x),  the cost of search,  c,  and the 
interest rate  r  are exogenous to the supply decision.  Given the distribution  G(x;η)  and 
values of  c  and  r, the worker's optimization problem can be solved to give  q0  and  q2  
as functions of the parameters: 
 

q0 = q0(δ,µ,λ2p,λ3p,c,r,η) 
 

q2 = q2(δ,µ,λ2p,λ3p,c,r,η) 
 
 The first simplification is to separate the estimation into a two-stage procedure.  
First the arrival rates and probabilities, (δ, µ, q0, q2, λ2p, λ3p) are estimated from the data 
by maximum likelihood.  Since this only involves incorporating the constraints apparent 
in the matrix (10), it is relatively easy.  Second, the parameters of the distribution of non-
market times,  η,  are solved for.  For a two-parameter distribution  G(.;η),  this involves 
no further restrictions: There are two estimated probabilities,  q0 and q2,  and two 
parameters,  η.  For a one-parameter family of distributions, there would be two 
estimates.  Alternatively, a minimum distance estimator could be used, e.g. 
 

Minη [q0-q0(η)]2 + [q2-q2(η)]2 
 
 The second simplification is that what initially appears to be a functional fixed 
point problem actually simplifies to two simultaneous non-linear equations.  Initial 
inspection of the worker's optimization problem (equation 4) indicates that it is a 
functional fixed point problem.  Rewriting (4) after the simplifying assumptions (linear 
utility, a single wage, z fixed, k set to zero), gives: 
 

(4') V(w,x) = Max[V1(w),V2(x),V3] = (TV)(w,x) 
 

V1(w) = (µ+δ+r)-1[w + µEV(w,X) + δV(0,0)] 
 

V2(x) = (µ+λ2p+r)-1[x + µEV(0,X) + λ2pV(w,x)] 
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V3 = (µ+λ3p+r)-1[-c + µEV(0,X) + λ3pV(w,0)]  . 

 
The variable  w  can take on the two possible values  0  (probability 1-p) or  w*  
(probability p).  The variable  x,  however, is continuous.  In this case, equation (4') 
appears to define a fixed point problem in an uncountably infinite number of dimensions.  
In fact, because of the reservation value property, only the reservation values need be 
determined.  By direct manipulation when  lnX~N(a,b)  (see appendix B), the problem is 
reduced to a set of simultaneous non-linear equations.  The dimensionality of the problem 
is reduced from uncountably infinite to two or three. 
 
 If the dimensionality of the parameter space of  G(.)  (i.e.  c  and  r  plus the length 
of  η)  is smaller than the number of estimated probabilities  qi,  then the restrictions 
imposed by the solution of the workers problem could be imposed in the first stage of the 
estimation.  In this model, however, it is inadvisable to do so.  The distribution  G(x;η)  
and the values  c  and  r  are not directly observed, can never be, and should probably be 
as loosely parameterized as possible.  All that can be inferred directly from the data are 
the probabilities  qi.  The safest procedure, then, is to allow  qi  to be determined from the 
data (as parameters) and then, say, estimate the parameters  η  conditional on  c,  r,  and 
the estimated values of  qi.    
 
 The asymptotic standard errors of  η  can be determined from the asymptotic 
standard errors of  q0  and  q2  by the delta method; see Billingsley, 1979, p.320.  This 
would require solution of the functional fixed point problem, as well as calculation of the 
second derivatives of the fixed point operator itself.  The fixed point problem would only 
have to be solved once, however, not at each iteration of the likelihood function as in 
Rust's problem.  Even if the parametric form chosen for  G(x;η)  were not the true 
functional form (as would probably be the case since the value of non-market time,  x,  
cannot be observed)  A = (δ, µ, λ3p, λ2p, q0, q2)  would still be consistently estimated.  In 
other words, some of the parameters of interest can be consistently estimated by a 
computationally simple method even in the presence of (model-generated) heterogeneity.   
Estimation of the parameters in the first stage is relatively straightforward, given that the 
model is identified.  For a single acceptable wage, the probability that an individual is in 
employment, unemployment, or NLF at t=1,  p*(1),  conditional on his initial probability 
density,  p*(0),  is given by an equation similar to (17): 
 

(18) p*(1) = p*(0) exp{Q}B 
 
with B   as defined in (17).  (Note that  p*(t)  is a row vector, not a matrix as  P*(t)  is in 
(17).)  For individuals in  e  and  u, the initial probability densities  p*(0)  are  
 

[    1    0    0    0    ]  [    0    1    0    0    ] 
 
 respectively, since one observes the state at  t=0.  For individuals in NLF,  p*(0)  is  
 

[   0    0    1-π2(0)    π2(0)  ] 
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where  π2(0) = n2(0)/n(0),  which depends on the unobserved  n2(0).    
 
 If  N  people start in  e  and end in  e,  then the contribution of these people to the 
likelihood is (again with a single acceptable wage)   
 

Π1
N([1 0 0 0] exp{Q} [1 0 0 0]') = Π1

N pee 
 
taking the notation from (14).  If  N  people start in  e  and end in NLF, then the 
contribution to the likelihood is   
 

Π1
N([1 0 0 0] exp{Q} [0 0 1 1]') = Π1

N(pen1 + pen2) 
 
If  N  people start in NLF and end in  e,  then the contribution to the likelihood is  
 

Π1
N([0 0 1-π2(0) π2(0)] exp{Q} [1 0 0 0]') 

 
= Π1

N[pn1e(1-π2(0)) + pn2eπ2(0)] 
 
In summary, the log likelihood, considering all groups, is6 
 

(19) £ = Neelnpee + Neulnpeu + Nenln(pen1 + pen2) 
 

+ Nuelnpue + Nuulnpuu + Nunln(pun1 + pun2) 
 

+ Nneln[(1-π2(0))pn1e + π2(0)pn2e] 
 

+ Nnuln[(1-π2(0))pn1u + π2(0)pn2u] 
 

+ Nnnln[(1-π2(0))(pn1n1 + pn1n2) + π2(0)(pn2n1 + pn2n2)] 
 
 For multi-wave panels, the log-likelihood function is just the sum of terms as 
above, with the  Nij  and  π2(.)  receiving time subscripts.  With multiple waves, it is in 
fact possible to estimate the initial proportion of n2-types,  π2(0),  as a parameter.  This is 
possible because one can impose the restriction that the implied proportion at the end of 
wave one be the initial proportion at the beginning of wave two, etc. 
 
 The present discussion can usefully be contrasted with that in Rust (1984).  Rust 
works with a general class of models, and shows that the parameters can be consistently 
estimated.  Rust, however, imposes assumptions sufficient to insure that the unobserved 
heterogeneity enters in a particular, tractable, form (assumption A6, p. 11).  His 
assumption basically insures that the conditional probability of the unobserved state 
changing depends only on observed state variables.  In the context of this model it would 
require that the probability of transiting from either  n1  or  n2  to a job would be the same, 
which violates the basic economic distinction between the two NLF states.  (This could 
be imposed by assuming that job and NLF offers arrived simultaneously, so that the NLF 
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state prior to an arrival would have no effect on the decision to take a job.)  Interesting 
heterogeneity, generated by the structure of the model, seems to require dropping Rust's 
assumption A6, thus going outside Rust's structure.  The two-stage estimation procedure, 
together with the reservation wage property of the optimization problem, leads to 
considerable simplification in estimation.    
 
 For a single wave of a panel, solving the zero of  P*(1)-P*(1;A)  provides 
maximum likelihood estimates.  This can be seen by replacing the  pij  in (19) (generated 
by (15)) with  pij  generated by (17).  In other words the elements of the 4x4 matrix  P(1)  
are replaced by the elements of the 3x3 matrix  P*(1),  to give a likelihood: 
 

(20) £ = Neelnpee + Neulnpeu + Nenlnpen 
 

+ Nuelnpue + Nuulnpuu + Nunlnpun 
 

+ Nnelnpne + Nnulnpnu + Nnnlnpnn  . 
 
The maximum likelihood estimates of  pij  are the  pij  from (16) (see Billingsley, 1961).  
This is the maximum value of the likelihood function with no constraints.  The likelihood 
function is thus maximized with respect to  A  when  P*(1)=P*(1;A)  (if such a solution 
exists).  For multiple waves, it should be clear that the maximum likelihood estimates,  
p^ij,  of the  pij  from (20), will not be the same as any of the monthly proportions,  pij. As 
pointed out above, the model is not identified with data from a single wave, except 
conditional on some assumption about  π(0),  the initial number of n2-types as a 
proportion of all those NLF.  It appears, however, that it is only the parameter  λ2p  that is 
not identified.  This is certainly the case when one has spell length data.  With spell 
length data, it is possible to consistently estimate the elements of the matrix  Q*,  given in 
(13).  From  Q*  it is possible to identify all the parameters except  λ2p.    
 
 Direct calculations indicate that with a single wave from a panel,  λ2p  is not 
identified, but the other parameters are.  Using data for January 1977 (described below) 
the model was estimated for various values of  π(0)  between 0.80 and 0.20.  The 
maximum spread (maximum minus minimum) for any of the five parameters (δ, µ, λ3p, 
qo, q2),  (as a percent of the mean of the parameter) was only 1.9%.  This is probably 
within the numerical error of the optimization routine.  The spread for  λ2p,  on the other 
hand, was 145% of the mean.  In other words, only the hiring rate for those not in the 
labor force depends on the proportion of n2-types.  This is logical, since only n1-types 
take jobs if they are offered.  If the proportion of n1-types is incorrectly assumed too low, 
then the estimated  λ2p  (the instantaneous transition rate into employment conditional on 
being an n1-type) will be estimated as too high.  It appears that the parameters (δ, µ, λ3p, 
q0, q2)  may be identified, while  λ2p  and  π(0)  are not. 
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PARAMETER ESTIMATES 
 
 This section of the paper provides estimates of the model when there is a single 
acceptable wage.  The data used are gross flows from the current population survey.  
There are two data sets, corresponding to two attempts to adjust for basic problems in the 
data.  The first source is the result of a research program undertaken by the Urban 
Institute during the early 1970's, and summarized in Holt et al. (1975).  This provides 
data by demographic group (age, sex, and race).  The monthly data have apparently been 
misplaced, but published averages for 1967-73 are available in Marston (1976).  The 
second source is the result of recent research by Abowd and Zellner (1985).  This 
provides data for the population 16+, and for males and females separately.    
 
 The original source for both data sets is the Current Population Survey (CPS) 
gross flow data.2  Every month since 1949 the Bureau of the Census, under contract from 
the Bureau of Labor Statistics, has tabulated a variety of gross labor force flow measures.  
These are based on matched responses from common rotation groups across one or more 
months.  The CPS consists of eight rotation groups, approximately 6,000 to 7,000 
households each, or a total of 48,000 to 56,000 households per month.  Each group is 
surveyed for four consecutive months, removed from the survey for eight months, and 
then surveyed for an additional four months.  This means that at any given survey date, 
up to 75% of the respondents were also in the sample the previous month (those with 
current month in sample = 2, 3, 4, 6, 7, and 8).  (In practice, some proportion of those 
eligible for matching are either missing entirely or have labor force status missing.  More 
on this below.)  From these one can estimate the number starting in one activity (say 
employment) last month and ending in another activity (say unemployment) this month.  
These are precisely the numbers  Nij  of the previous section.  One can also estimate the 
probability of starting in one state and ending in another, i.e. the  pij  of equation (16).  
 
 There are some problems with the CPS gross flow data.  First, as mentioned 
above, there are records that cannot be matched.  For any particular month about 15% of 
the eligible observations have labor force status missing from either this month or the 
previous month.  Since there is reason to believe that these missing observations are not 
random, these introduce biases into the gross flow measures.  One indication of the 
degree of the bias is that the marginal distributions of labor force status constructed from 
the gross flow often differ substantially from the full CPS proportions. A  second 
problem is that random classification errors may bias the gross flows, even if they do not 
bias measurement of the levels.  If respondents randomly change their reported status 
(without changing their true status) the flows will be biased even though the levels are 
not.    
 
 Abowd and Zellner undertake to adjust the reported raw gross flow data.  Their 
methodology and results are reported in full in Abowd and Zellner (1985).  They develop 
an adjustment procedure which    
 

1. addresses the missing classification problem without assuming that the missing 
                                                 
2 This and the following two paragraphs paraphrase Abowd and Zellner (1985). 



 23

labor force status information is missing at random, and 
 

2. adjusts the resulting flow estimates for classification error. 
 
Their method has some reasonable features: 
 

1. it makes use of the information contained in the partially classified observations 
(those people who are observed this month but not last month or vice versa). 

 
2. it uses summary data in a manner which permits direct applications to existing 

gross flow data.  In other words their technique can be applied by other 
researchers to existing, published, flow data. 

 
3. the technique is invertible (provided certain information is disclosed).  That is, the 

original data can be recovered to allow others to apply their own adjustment 
procedures if Abowd and Zellner's is not appropriate for a particular application. 

 
 Abowd and Zellner provide some evidence and further arguments in favor of their 
technique.  For the current application, the adjusted data seems adequate.  There is the 
problem, however, that the data they report are population weighted; each person counts 
for about 1,000 members of the population.  This means that all standard errors reported 
from maximum likelihood estimation must be adjusted by a factor of about 1,000.  
 
 Marston (1976) presents monthly transition matrixes by demographic group 
averaged over the period 1967 to 1973. I  have used these as if they were generated by a 
single panel of the model outlined above.  This is obviously not ideal.  Marston's data, 
however, is the only source available by age, sex, and race.  The advantages of using the 
data, flawed though it is, outweighs the disadvantages.  The instantaneous transition 
matrix for the system is defined in (10).  The six parameters (δ,µ,q0,q2,λ3p,λ2p)  can be 
calculated as described above, assuming one is in the steady state, by solving for the zero 
of equation (17).  Standard errors are not given for the estimates because the proportions 
matrix used is the average of actual monthly flow matrixes. 
 
 The parameter estimates shown in table 1 are generally what one would expect.  
Women and young people have much higher arrival rates of NLF values, and have much 
higher probabilities of quitting (q2).  As one would expect, women generally have higher 
mean distributions of NLF values than do men.  Interestingly, the hiring rate from 
unemployment is pretty much the same for everyone, while the hiring rate from NLF is 
lower for older people.  In other words, demographic groups do not differ dramatically 
with respect to going from unemployment to employment, but do differ dramatically with 
respect to leaving employment or going in and out of the labor force.  Note that the model 
does reproduce the average levels of unemployment rather well (see table 3). 
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     TABLE 1 
 
 CALCULATED PARAMETERS FOR SIMPLE SEARCH MODEL 
      CPS GROSS FLOW DATA AVERAGED OVER 1967-1973 
 
_________________________________________________________________ 
         NLF Dist'n 
   delta mu Q0 Q2 λ3p λ2p µ σ 
White Males 
 16-19  .0583 .7093 .1566 .1810 .4627 .2980 -.400 1.024 
 20-24  .0349   .4301   .2335   .0844   .4803   .4809    -     - 
 25-59  .0115   .2028   .2680   .0155   .4701   .1081   -.084    .226 
 
White Females 
 16-19  .0407   .6586   .1386   .2482   .5165   .1853   -.044    .719 
 20-24  .0223   .3017   .1688   .1824   .5923   .0796 .058    .301 
 25-59  .0128   .4586   .0407   .1034   .4066   .0529  .078    .300 
__________________________________________________________________ 
 
NOTE:  The parameters  by demographic group use  data from Marston (1976).   The raw 
data are averages, over the period 1967-1973, of monthly flow transition matrixes, by 
demographic group.   The parameters are: 

delta: rate of arrival of layoffs in the job state.  mu: rate of arrival of new NLF offers.  
Q0: probability of non-market benefits below lower reservation value (decision rule).   
Q2: probability of non-market benefits above upper reservation value (decision rule).  
λ3p: rate of arrival of new jobs (product of search intensity and probability of finding 
vacant job in unemployment (search) activity.  λ2p: rate of arrival of new jobs in 
NLF.  NLF Dist'n: The distribution of NL value is assumed log-normal.  The values 
assumed for cost of search and interest rate are c=0 and r=.005 per month.  The mean 
and variance of the distribution G(x) are estimated conditional on the values of c and 
r. 
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TABLE 2 
AVERAGE MONTHLY TRANSITION PROBABILITY BY DEMOGRAPHIC 

GROUP, 1967-1973, FROM MARSTON (1976) 
______________________________________________________________________    
   eu en ue un ne nu   
White Males  
 16-19  0.0374 0.1205 0.3016 0.3295 0.1543 0.0625  
 20-24  0.0245 0.0381 0.3623 0.1791 0.1949 0.0610  
 25-59  0.0086 0.0037 0.3546 0.1023 0.0795 0.0382   
White Females  
 16-19  0.0272 0.1486 0.3065 0.3373 0.1002 0.0519  
 20-24  0.0155 0.0537 0.3903 0.1718 0.0533 0.0331  
 25-59  0.0087 0.0476 0.2733 0.2939 0.0432 0.0124   
______________________________________________________________________    
 

TABLE 3 
OBSERVED AND STEADY STATE PROPORTION OF PEOPLE EMPLOYED, 

UNEMPLOYED, AND NLF 
_________________________________________________________________ 

   O B S E R V E Da  S T E A D Y  S T A T Eb 
   e u n e u n 
White Males 
 16-19  50.96 7.22 41.82 52.77 7.10 40.13 
 20-24  78.14 5.61 16.26 79.16 5.33 15.51 
 25-54  94.35 2.18 3.46 93.02 2.15 4.83 
White Females 
 16-19  39.78 5.97 54.25 40.80 6.01 53.19 
 20-24  53.36 3.97 42.68 54.37 3.95 41.67 
 25-54  46.61 1.76 51.63 47.69 1.84 50.47 
 _________________________________________________________________ 
 
a   The observed proportions of people is calculated from the average number of people 

in employment, unemployment, and NLF, 1967 to 1973 (civilian population only)  
b   The steady state proportions are calculated from the parameter estimate given in table 

1 or alternatively the finite period transition matrixes from the CPS gross flow data, 
given in Marston (1976). 

 
 
 
 Figures 1 and 2 show the distributions of non-market times for males and females 
from the second stage estimation (the mean and variance of the distribution of non-
market times are estimated by solving the fixed point problem).  The distribution of non-
market time is assumed to be log-normal.  The mean and variance are calculated 
conditional on the values of  c  and  r,  and are as shown in table 1.  The figures show that 
the distributions of non-market benefits (relative to the wage) are substantially different 
between men and women and between teenagers and older workers.  (White males 20-24 
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is not shown because the data are inconsistent with the model.)  Interestingly, white 
females 20-24 and 25-59 have distributions of non-market benefits (relative to wages) 
almost identical.  Behavior of the two groups, however, is different in important respects.   
The average participation rate for females 20-24 is 57.3%, while it is only 48.4% for 
females 25-54.  (Steady state rates implied by the model are 58.3% for 20-24, 49.5% for 
25-59.  See table 3.)  Since both female groups have essentially the same distribution of 
non-market benefits, the difference must be the results of differences in other parameters.    
 
 To determine which parameter accounts for most of the difference between the 
two groups, the model for females 25-59 was solved, but with female 20-24 parameters 
sequentially substituted.  The first row of table 4 shows the steady state values of  e  and  
u  for females implied by the estimated parameters.  The second row shows the values for  
e  and  u  when the arrival rate of layoffs  (δ)  is changed to that of females 20-24 (all 
others at their estimated values).  The third row shows the values when  δ  reverts to the 
estimated value, but the arrival rate of non-market offers  (µ)  is changed to that of 
females 20-24 (all others at their estimated values).  The fourth row shows that the arrival 
rate of jobs in unemployment makes the difference, and it is the only parameter that 
makes a substantial difference to the employment ratio.  The faster arrival of jobs makes 
unemployment more valuable to younger women, and induces a higher unemployment 
ratio (number unemployed / population).  The higher pool of unemployed workers and 
higher conditional probability of finding a job when unemployed means there are more 
younger women working.  This happens even though younger women have both higher 
layoff rates (δ, 0.022 versus 0.013) and higher quit rates (uq2, 0.055 versus 0.047).  Note 
that a higher arrival rate of jobs is unambiguously good for a worker, even though it may 
raise the steady-state unemployment ratio. 
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FEMALES
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TABLE 4 
COMPARISON OF STEADY STATES 
ACROSS DEMOGRAPHIC GROUPS 

AMOUNT ATTRIBUTABLE TO SPECIFIC PARAMETERSa 
________________________________________________________________ 

   e  u    e  u 
 
   WHITE FEMALES 25-59 
Estimated  47.66  1.84    47.66    1.84 
After substituting parameters from  
   Females 20-24     Males 25-59 
 δ  38.91  1.96    49.10    1.80 
 µ  48.70  2.89    50.37    3.55 
 λ3  55.23  3.54    50.61    2.52 
 λ2  47.38  1.14    48.14    0.85 
 G(x) (dist'n)   -    -    94.99    2.69   
   WHITE FEMALES 20-24  
 Estimated 54.39  3.96       -    - 
                 WHITE MALES 25-59  
 Estimated   -    -    93.05    2.15   

________________________________________________________________ 
a   The row labeled "Estimated" are the steady state values implied by the model from  

table 3  The rows labeled "After substituting... " refer to the steady state implied by 
substituting for the white female 25-59 value of the specified parameter the value for 
the demographic group in the column heading. 

 
 
 A similar analysis is done to compare males and females 25-59.  This shows that 
virtually all the difference in the employment ratio between males and females 25-59 is 
the result of different NLF opportunities relative to wages.  Since parameters for each 
demographic group are estimated separately, and since the value function is 
homogeneous of degree one with respect to the value of  w,  NLF values are all relative 
to the wage.  The wage used in estimation is the same for all demographic groups (and 
was chosen as 1.183).  The NLF distributions are thus comparable across demographic 
groups, but in a relative and not an absolute sense.  The mean of the white male 25-59 
distribution is 0.943, while that of the white female is 1.131.  In other words, the mean 
NLF offer for women is higher, relative to their offered wage, than for men.   The offered 
wage for men may be higher than for women, so that the absolute means of the NLF 
offers may not be very different.  In any case, when the female 25-59 optimization 
problem is solved using the NLF distribution for males 25-59, the proportions employed 
and unemployed are close to that for men 25-59.  Changing the hiring and firing rates has 
virtually no effect on the proportion employed.  The arrival of non-market offers, 
however, does affect the proportion unemployed. 
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 The differences between demographic groups are dramatic.  Analyzing the mean 
length in each activity gives a perspective on the differences.  For a Markov process, the 
mean length in a state is the inverse of the exit rate; if the diagonal element of the 
instantaneous transition matrix is  qii<0,  then the mean duration is  -1/qii.  The exit rates 
for employment and unemployment can be read directly from the transition matrix 
(equation 10), and the implied mean durations are shown in table 5.  NLF is not a state of 
the Markov transition process, while  n1  and  n2  are.  The mean duration for  n1  and  n2  
are calculated as  -1/qii.  Since the exit rates from  n1  and  n2  are not the same, the hazard 
for exit from NLF is not constant.  The problem is similar to, but more difficult than, the 
standard mixture of Markovs problem.  In this case an n1-type may change into an n2-
type, and vice-versa, before exiting to employment or unemployment.  The density of 
leaving times and the mean duration can be solved for (see Cox and Miller, 1965, section 
4.6).    
 
 

TABLE 5   
AVERAGE DURATION (MONTHS) 

IMPLIED BY ESTIMATED MODEL PARAMETERS 
(UNDER ASSUMPTION OF STEADY STATE) 

____________________________________________________________________ 
     Employment   Unempl't  N1  N2  Not in LF     
White M  
 16-19   5.4  0.94  1.9  1.7  3.6  
 20-24   14.0  1.2  1.6  2.5  3.2  
 25-59   34.9  1.6  6.0  5.0  7.8     
White F 16-19  4.9  0.92  2.3  2.0  5.3  
 20-24   12.9  1.2  5.4  4.1  10.5  
 25-59   16.6  1.2  8.4  2.4  16.5      
Average duration (in months) implied by the estimates in table 1.  Calculated as 
described in the text. 
   ____________________________________________________________________ 
 
 
 As one would expect, the mean stay in NLF differs between males and females, 
with the mean duration for males lower than for females at each age category.  The mean 
duration in NLF is over twice as long for females as for males age 25-59.  Much of this 
difference arises because of the high transition rate from  n1  to unemployment for men, 
and the high transition rates between  n1  and  n2  for women.  The implied mean duration 
of a job varies considerable, both across ages and between sexes.  The low is 4.9 months 
for female teenagers and the high is 34.9 months for males 25-59 (a difference of 7 
times).  In contrast, the mean duration of unemployment only varies from 0.92 for female 
teenagers to 1.6 for males 25-59.  The major differences between demographic groups 
appear in their employment (and NLF) rather than their unemployment behavior.  This is 
consistent with Coleman (1985b), which argues that heterogeneity in not-unemployment 
is important in accounting for observations from the March CPS work experience data.    
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 Differences between demographic groups also appear in their responses to 
changes in the underlying parameters such as hiring rates or layoff rates.  In particular, I 
examine the effect on steady-state employment and unemployment of changes in the 
layoff rate and the hiring rate.  There are two effects of a change in an exogenous 
parameter: first the direct effect on the steady state resulting from a different exogenous 
transition rate, and second the changes in the worker's decision rules which changes 
endogenous transition rates.  The direct effect is the change in the solution to the steady 
state equation  pQ=0  (see equation 9) when the decision rules do not change:  ∂e/∂δ.  
The total effect is the change in the steady state when the endogenous decision rules 
change: 
 

∂e/∂δ + (∂e/∂q0)dq0/dδ + (∂e/∂q2)dq2/dδ . 
 
 The direct change in the steady state with respect to a parameter  a  is found by 
substituting  n1=1-e-µ-n2  into  pQ=0.  One then obtains a set of three simultaneous 
equations of the form 
 

A + Bz = 0 
 
with 
 

zT = [e u n2]  . 
 
      _  _ 
      |   λ2p     | 
    A = |   µq0     | 
      |_ µq2  _| 
 
    _      _ 
    |  -(δ+µq2+λ2p)    λ3p-λ2p -λ2p     | 
  B = | δ-µqo  -(λ3p+µ) 0      | 
    |_ 0       0  -µ    _| 
 
 
Taking the derivative with respect to  α  gives 
 

dz/dα = -B-1[∂A/∂α + (∂B/∂α)z]  . 
 
The derivatives of the decision rules involve solving the contraction mapping that defines 
the optimization problem, and solving for the derivatives of the reservation wages.  
(These will depend on the assumed functional form for the distribution of the unobserved 
value of non-market time, G(.).)  This is done in appendix B.  
 
 Table 6 shows the effect on employment and unemployment of changes in three 
parameters: the layoff rate (δ) the hiring rate from unemployment (λ3p), and the wage 
(w). 
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TABLE 6 
EFFECTS ON EMPLOYMENT AND UNEMPLOYMENT 
RESULTING FROM A 1% CHANGE IN PARAMETERS 

 
 
       CHANGE IN 
     δ    λ3p    w 
       EFFECT ON 
    e  u  e  u  e  u 
White Males 
 
 16-19 direct -0.054   0.029  0.057  -0.031    0.0  0.0 
  total -0.091    0.024  0.098  0.126  0.527  0.071 
 
 25-59 direct -0.034 0.018  0.032  -0.017  0.0  0.0 
  total -0.049 0.018  0.015  -0.003  0.706  0.006 
 
White Females 
 
 16-19 direct -0.030 0.015  0.055  -0.029  0.0  0.0 
  total -0.071 0.010  0.127  0.023  0.912  0.121 
 
 20-24 direct -0.030 0.015  0.058  -0.028  0.0  0.0 
  total -0.117 0.010  0.365  0.062  2.975  0.142 
 
 25-59 direct -0.031 0.007  0.038  -0.009  0.0  0.0 
  total -0.136 0.003  0.185  0.044  5.329  0.224 
 
 The direct effect is δ[∂e/∂δ].  
 The total effect is δ[∂e/∂δ + (∂e/∂q0)dq0/dδ + (∂e/∂q2)dq2/dδ]. 
 _________________________________________________________________ 
 
 
 
The main point in table 6 is that different demographic groups have quite different 
responses to parametric changes.  For example, the effect on employment of a change in 
the hiring rate from unemployment is almost 5 times larger for females 25-59 than for 
males (0.185 versus 0.039).  The difference is mostly the result of different effects on 
decision rules.  For both groups the direct effect,  λ3p(∂e/∂λ3p),  is about the same (0.038 
for females, 0.032 for males).  The change in e   resulting from a change in  q0,  
(∂e/∂q0)dq0/dλ3p,  however, is larger for females (0.409 versus 0.083). 
 
 Interestingly, for both males and females 25-59 the indirect effect through 
changes in quit rates,  (∂e/∂q2)dq2/dλ3p,  is negative (-0.047 for females, -0.069 for 
males).  In other words, increased hirings from unemployment lead to higher quit rates.  
At first glance this seems anomalous, but it is not.  An increase in the hiring rate from 
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unemployment directly increases the value of unemployment.  Since movement from 
NLF to unemployment is more likely than movement from employment to 
unemployment (µq0>δ for all groups), the value of NLF increases more than the value of 
employment.  This implies that the reservation NLF value,  x*2,  falls.3 
 
 

TABLE 7 
EFFECT ON VALUE FUNCTION 

RESULTING FROM A 1% CHANGE IN PARAMETERS 
 _________________________________________________________________ 
 
         CHANGE IN 
     δ    λ3p    w 
         EFFECT ON 
      Ve    Vu    Ve  Vu   Ve   Vu 
White Males 
 16-19   -9.014 -8.868 9.458  10.08  126.1  124.1 
 25-59   -4.739 -4.661 4.409  6.144  220.7  217.0 
White Females 
 16-19   -4.486 -4.391 8.114  8.739  98.58  96.50 
 20-24   -3.852 -3.768 10.21  11.77  131.9  129.0 
 25-59   -2.314 -2.200 2.677  3.552  118.0  112.1 
 _________________________________________________________________ 
The first entry (-9.014) is δ[∂Ve/∂δ]. 
 
 
 From table 6 it is clear that changes in the wage generate large changes in steady 
state employment.  Changes in the wage, however, also generate large changes in the 
worker's value function.  Table 7 shows the changes in the value of employment and 
unemployment associated with a one percent change in the parameter.  A one percent 
change in the wage has a substantially larger effect than a one percent change in layoffs 
or hiring rates.  The reason for this is that one can think of the change in layoffs or hiring 
rates as only a transitory effect; once hired the value of the hiring rate is not too 
important.  In contrast, changes in the wage have a direct and lasting impact on the value 
of all states, since the wage provides utility directly.  Tables 6 and 7 imply that, given the 
choice, workers may prefer to realize an exogenous decrease in steady-state employment 
through a rise in the layoff rate or a fall in the hiring rate rather than a change in the 
wage.  For prime age white males, the fall in the value of being employed (for each 0.01 
fall in steady-state employment-to-population ratio) is .97 if layoffs rise, 3.1 if wages 

                                                 
3 It should be remembered, however, that the changes contemplated in table 5 are pure comparative statics 
comparisons.  In general equilibrium, changes in a parameter exogenous to the worker's decision problem 
(but endogenous to the joint worker-firm problem) may be associated with changes in other exogenous   
parameters.  In addition, the dynamics associated with changes in parameters may be of as much or more 
importance than the changes in the steady state. (See Coleman, 1985a, for estimates of the total population 
in a non-stationary setting.)  Nonetheless, the differences between older men and women, and between the 
effect of changes in transition rates versus changes in wages, stand out. 
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fall.4  Table 8 shows the effect on the value function when the given parameter changes 
so that steady-state employment-to-population ratio falls by 0.01. 
 
 
 

TABLE 8 
 

EFFECT ON VALUE FUNCTION RESULTING  
FROM A 0.01 FALL IN EMPLOYMENT-TO-POPULATION RATIO 

 
        CHANGE IN 
     δ    λ3p    w 
        EFFECT ON 
    Ve  Vu  Ve  Vu  Ve  Vu 
White Males 
 16-19   0.990  3.695  0.965  0.800  2.393  17.48 
 25-59   0.967  2.589  1.131  2.119  3.126  361.7 
White Females 
 16-19   0.632  4.391  0.639  3.800  1.081  7.975 
 20-24   0.329  3.769  0.197  0.849  0.443  9.085 
 25-59   0.170  7.333  0.145  0.807  0.221  5.004 
 _________________________________________________________________ 
The first entry (0.990) is .01*(∂Ve/∂δ)/[∂e/∂δ + (∂e/∂q0)dq0/dδ  + (∂e/∂q2)dq2/dδ]      
 
 
 In a general equilibrium version of this model, layoff rates and hiring rates (in 
addition to the wage) would equilibrate supply and demand.  Given that workers' utility 
may be very sensitive to changes in the wage, it would be reasonable to see large changes 
in layoff and hiring rates (i.e. direct changes in the levels of employment and 
unemployment without changes in the wage) in response to shifts in productivity.    
 
 Table 9 shows the results of estimating the model by maximum likelihood using 
monthly flow data over the period January 1977 to December 1982 (72 months).  The 
asymptotic standard errors are only an approximation.  The reason is that the flows 
reported by Abowd and Zellner (1985) are estimates of the U.S. civilian population from 

                                                 
4  dVe/dδ   =  -4.739 
 de/dδ     =  -0.049 
 (dVe/dδ)δ  =  (dVe/dδ):(de/dδ)  =  -4.739/-0.049   
   =  96.71  per 1 unit change in e resulting from a change in  δ   
   =  0.9671 per 0.01 unit change in  e. 
 dVe/dw   =  220.7 
 de/dw    =  0.706 
 (dVe/dw)w   =  (dVe/dw):(de/dw)  =  220.7:0.706   
   =  312.6  per 1 unit change in e resulting from a change in  w   
   =  3.126 per 0.01 unit change in  e. 
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the CPS sample.  Individuals in the CPS sample are weighted by their proportional 
representation in the population to arrive at population estimates.  In addition, Abowd 
and Zellner adjust the data (as outlined above).  The weighting in the sample is very 
approximately 1,000.  This means that the value of the likelihood function must be 
multiplied by approximately 1,000.  Because of the very small standard errors, the results 
will not be changed substantially if the weighting factor were different by an order of 
magnitude.  Nonetheless, the standard errors must be interpreted with some caution. 
 
 
 

TABLE 9 
 

PARAMETER ESTIMATES FOR CIVILIAN POPULATION 16+ 
USING MONTHLY GROSS FLOW DATA, 1977 TO 1982 

_______________________________________________________________________ 
      Parameters 
 µ  δ  λ3p  λ2p  q0  q2  p0 
 .199941 .0171804 .268225 .0318715 .151250 .0987056 .209437 
 
     Asymptotic Standard Errors 
 
 649.7E-6 55.46E-6 756.8E-6 114.8E-6 18.84E-6 14.01E-6 12.16E-3 
 
       Inverse Hessian x10-5 
 42.208E-3 
 334.37E-6   307.59E-6 
 427.29E-6   498.66E-6 57.272E-3 
-1.4506E-3   -22.606E-6 -1.0398E-6 1.3171E-3 
-24.111E-3   -250.02E-6 3.2871E-3 176.82E-6 35.506E-6 
-22.230E-3   -292.69E-6  11.355E-6 1.3666E-6 13.211E-3 19.616E-6 
-55.871E-3   -3.0503E-3 -39.398E-3 40.103E-6 49.222E-3 36.534E-3 14.798 
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CONCLUSION 

 
 The introduction to this paper pointed out two substantive theoretical differences 
between this model and other models of aggregate labor supply.  First, this model 
presumes an optimization problem for the individual, and then aggregates individual 
behavior to derive the laws of motion for the economy as a whole. A representative agent 
approach does not work.  Individual choices are discrete, whereas the aggregate shows 
more or less continuous variation in employment and unemployment; it is impossible for 
the aggregate economy to behave like an individual worker.  Even though the laws of 
motion for the aggregate imply continuous variation, they are derived by modeling the 
discrete choice problem and then aggregating, rather than assuming workers make 
marginal decisions.  In addition to the discrete nature of the individual decisions, 
different demographic groups show distinctly different behavior.  
 
 Second, technological and informational constraints, which make it impossible to 
find a job instantly, enter both the worker's value function and the aggregate laws of 
motion.  These constraints, taken as exogenous by the worker, may act as "prices" that 
equilibrate supply and demand in a general equilibrium model.  Firms would have costs 
of hiring and firing workers at high rates.  In competition, these hiring and firing rates 
will change until the marginal benefit to a worker of an increase equals the marginal cost 
to the firm.  A shock to the worker's labor supply function or the firm's labor demand 
function will be equilibrated by changes in all "prices," including the wage and hiring 
rates.  In a general equilibrium model, then, one might see large fluctuations in 
employment associated with small fluctuations in real wages.  This is consistent with the 
statistically insignificant estimates of aggregate labor supply elasticities often found, e.g. 
in Altonji and Ashenfelter (1980), or Altonji (1982): 
 

For most specifications, the current real wage, the expected real wage, and the 
expected real rate of interest are either insignificantly related to 
unemployment and labor supply, or have the wrong sign.  [Altonji, p. 784] 

 
It is also consistent with the general feeling that wages fluctuate too little to be explained 
by a model where wages equilibrate labor supply and demand:  
 

In the equilibrium model described in sections 2 and 3, efficient employment 
fluctuations are achieved by equating both the marginal product of labor and 
the marginal rate of substitution (between leisure and consumption) to the real 
wage rate, in each period. Under reasonable assumptions on the supply and 
demand parameters, this implies that the real wage should fluctuate more than 
employment. … In the U.S. manufacturing data used in section 6 below, 
employment has substantially larger variance than the real wage. [Kennan, 
1983, section 5.]    

 
 The empirical estimates of this paper are for a steady state version of the model 
using data by demographic group from Marston (1976).  The results, broadly, are three-
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fold.  First, the difference in aggregate employment and unemployment between prime 
age males and females seems to be primarily the result of differences in the distribution 
of non-market opportunities, rather than differences in hiring or layoff rates.  Second, 
demographic groups show marked differences in their employment and NLF behavior, 
but not so much difference in their unemployment to employment transition of their mean 
duration of unemployment.  This is consistent with the arguments in Coleman (1985b) 
that heterogeneity in not-unemployment is quite important in accounting for certain 
unemployment statistics.  Finally, across all demographic groups, the value of 
employment falls more in response to changes in wages than to changes in either layoffs 
or hiring rates (when each changes so that the employment-to-population ratio falls by 
0.01).  This is interesting when taken in conjunction with the observation that, for some 
industries at least, wages fluctuate much less than employment.  It could be optimal that 
employment is directly equilibrated by changes in layoff or hiring rates.   Further work 
with this type of discrete choice model of the labor market is necessary.  Non-stationarity 
(changes in offer distributions and hiring and layoff rates) must be introduced.  
Equilibrium between firms and workers must be studied.  Nonetheless, this type of model 
seems both feasible and fruitful for analyzing the aggregate labor market. 
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APPENDIX A 
 

EXISTENCE OF THE VALUE FUNCTION 
 
 Blackwell's characterization of the contraction mapping theorem is used to prove 
that  V(w,x,k,z)  exists, is continuous, and increasing in  (w,x).   First, the equations 
defining  V(w,x,k,z), 1-4, are rewritten in the form of an operator  T  on an arbitrary 
function  v(w,x,k,z): 
 
(1) 
 (Tv)(w,x,k,z) = Max{  (µ+δ+ν+λ1+r)-1[u(w)+µEv(w,X,0,z)+δv(0,0,k,z)   
 
    + λ1Ev(max(w,W),0,0,z) + νEv(w,0,0,Z)], 
 
  (µ+λ2+ν+r)-1[u(x)+µEv(0,X,0,z)+λ2Ev(W,x,0,z)+νEv(0,x,0,Z)], 
 
  (µ+λ3+ν+r)-1[u(k-c)+µEv(0,X,k,z)+λ3Ev(W,0,k,z)+νEv(0,0,k,Z)]   } 
 
This operator takes continuous functions over  [0,∞]x[0,∞]x{0,k}  into continuous 
functions.    
 
 Some conditions are required on  u(.), the arrival rates  µ,  δ,  λi,  ν,  and the 
distributions of  W, X, and  Z.  The random variables  Z,  W, X   are independent random 
functions over the positive real line  ℜ+  and a probability space  (Ω,ℑ,P).  In other 
words, for  ω∈Ω    
 

Z = Z(z,ω) 
 

W = W(w,z,ω) 
 

X = X(x,z,ω) 
 
To maintain the interpretation of  z  as a measure of the strength of the economy I require 
that  W(w,z,ω)  and  X(x,z,ω)  are non-decreasing in  z  for each  ω,  w,  and  x.  This 
insures that the probability of receiving a wage (or non-wage) offer at least as high as 
some  w'  is non-decreasing: 
 

P[ω : W(w,z,ω) ≥ w'] = 1 - Fw,z(x) 
 
is non-decreasing in  z,  for a given  w.  Since wage offers are non-negative this means 
the mean of  W(.),  for a given  w,  will increase with  z: 
 

∫ΩW(w,z1,ω)dP(ω) ≤ ∫ΩW(w,z2,ω)dP(ω) for  z1<_z2.    
 
 To maintain non-decreasingness of the value function in the wage and non-wage 
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offers,  W(w,z,ω)  and  X(x,z,ω)  are assumed non-decreasing in  w  and  x,  respectively.  
This has intuitive appeal if wages reflect productivity, and current wage offers serves as 
signals of productivity.  Note, however, that the existence of an optimal policy and of the 
value function does not require this assumption (nor the assumption above about W(.) 
and X(.) non-decreasing in z).  It is made to insure the value function increases in  w  and  
x. 
 
 Further restrictions on the utility function and the random variables are: 
 

limx→∞ u(x) < ∞ 
 

E|W|,  E|X|,  E|Z| < ∞   for all w, x, z  . 
 
In addition, all arrival rates are finite for all z. 
 
 Using the sup-norm to define the distance between two functions  v0  and  v1: 
 
(2)  d(v0,v1)  =  || v0 - v1 ||  =     sup    |v0(w,x,k',z) - v1(w,x,k',z)|  
             w,x,z>_0  
             k'=k or 0    
 
the space of continuous, bounded functions is closed (all Cauchy sequences converge), 
and one can use Banach's fixed point theorem (see Wouk, 1979, p. 21): 
 
BANACH’S FIXED POINT THEOREM 
 
If 
 
(3)   d(Tv0,Tv1)  ≤  βd(v0,v1)   for  0<β<1 and any  v0,  v1 
 
then the functional fixed point equation  v=Tv  has a unique solution.  The solution is  v*,  
with 
 
(4)  Tiv0 → v*  as  i → ∞  for  any continuous, bounded  v0 

 
where  T2v = T(Tv), etc. 
 
 Rather than using Banach's theorem directly, it is often easier to use  
 
BLACKWELL'S CONDITIONS: 
 
 If an operator,  T,  from the space of bounded continuous functions to the space of 
bounded functions satisfies 
 
 a) monotonicity: v0 < v1  ⇒  Tv0  ≤  Tv1 
 
 b) T(v0+k) < Tv0 + βk,  0 < β < 1,  k constant. 
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Then  T  is a contraction mapping with 
 

d(Tv0,Tv1)  ≤  βd(v0,v1)   0<β<1 . 
 
PROOF 
 
 v0(w,x,k,z)  ≤  v1(w,x,k,z) + || v0 - v1 ||   by definition of sup-norm      
 
 (Tv0)(w,x,k,z)  ≤  (Tv1)(w,x,k,z) + βv1   by a), b) 
 
 v1(w,x,k,z)  ≤  v0(w,x,k,z) + || v0 - v1||   by definition of sup-norm      
 
 (Tv1)(w,x,k,z)  ≤  (Tv0)(w,x,k,z) + β|| v0 - v1 ||   by a), b). 
 
Using these two inequalities gives 
 
 | (Tv0)(w,x,k,z) - (Tv1)(w,x,k,z) | <  β|| v0 - v1 ||   and so   
 
   || Tv0 - Tv1 ||  ≤  β|| v0 - v1 || 
 
      d(Tv0,Tv1)  ≤  βd(v0,v1) .     Q.E.D. 
 
 For the operator  T  in (1), conditions a) and b) are easy to verify.  T  is non-
decreasing in  v,  so a) is satisfied. 
 
   [T(v+c)](w,x,k,z) < (Tv)(w,x,k,z) + βc   
 
 where β = max { (µ+δ+λ1+ν)/(µ+δ+λ1+ν+r), (µ+λ2+ν)/(µ+λ2p+ν+r), 
 
    (µ+λ3p+ν)/(µ+λ3p+ν+r)  } . 
 
As long as  r>0,  0<β<1,  and so condition b) is satisfied.  Thus 
 
   V(w,x,k,z) = (TV)(w,x,k,z)    
 
has a unique solution,  V(w,x,k,z).  Further,  V(w,x,k,z)  is non-decreasing in  (w,x).  The 
operator  T  (see 1) takes functions that are non-decreasing into functions that are non-
decreasing; it preserves the non-decreasing property.  Since  V(w,x,k,z)  is the limit of  
(Tiv0)(w,x,k,z),  V(w,x,k,z)  will be non-decreasing if  v0(w,x,k,z)  is non-decreasing.  
Since  v0(w,x,k,z)=0  is a valid starting function, and is non-decreasing,  V(w,x,k,z)  is 
non-decreasing in  (w,x). 
 
 Note that the restriction  limx→∞ xu(x)<∞  means the above proof does not hold 
for  u(x) = x,  i.e. wealth maximization, unless the range of  W  and  X  are restricted to 
be finite.  The problem is that  V(w,x,k,z)  is not bounded.  To circumvent this problem, 
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define 
 

V*(w,x,k,z) = V(w,x,k,z) - Max[w/(δ+r), x/(µ+r)] 
 

= Max[V1(w,z),V2(x,z),V3(k,z)] - Max[w/(δ+r), x/(µ+r)] 
 
When the random variables  W,  X,  Z  have finite means, then the operator defined by  
(Tv)(w,x,k,z)-Max[w/(δ+r), x/(µ+r)]  (with  T  from (1) above) takes positive, bounded, 
continuous functions into positive, bounded, continuous functions.  Thus the operator 
defined by    
 

(Sv)(w,x,k,z) = (Tv)(w,x,k,z) - Max[w/(δ+r), x/(µ+r)] 
 
with  u(x)=x  has a unique solution  V*(w,x,k,z).  This proves that  V(w,x,k,z) = 
V*(w,x,k,z) + Max[w/(δ+r),x/(µ+r)]  exists and is unique.  In addition one can show that 
it is increasing in  (w,x)  for fixed  z. 
 
 To prove the assertion, take the operator  T,  and replace every occurrence of  
v(w,x,z)  with  v(w,x,z) = v*(w,x,z) + Max[w/(δ+r),x/(µ+r)].  The expression for  V1  
then becomes    
 
 (µ+δ+ν+λ1+r)-1{w+µEv*(w,X,0,z) + δv*(0,0,k,z)   
 
     + λ1Ev*(max(w,W),0,0,z) + vEv*(w,0,0,Z)}   
 

  + (µ+δ+ν+λ1+r)-1{w + µawP[X<aw/b] + µb ∫
∞

aw/b
XdP(X)  + λ1awP[W<w]   

 

      + λ1a ∫
∞

w
WdP(W)  + νaw}    

 
where a =  1/(δ+r), b =  1/(µ+r).  By judicious addition and subtraction, one can obtain 
 
 (µ+δ+ν+λ1+r)-1{ w+µEv*(w,X,0,z) + δv*(0,0,k,z)   
 
    + λ1Ev*(max(w,W),0,0,z) + νEv*(w,0,0,Z)   
 

  - µawP[X>aw/b] + µb ∫
∞

aw/b
XdP(X)  - λ1awP[W>w] + λ1 ∫

∞

w
WdP(W)    

 
    - ((µ+δ+ν+λ1+r)/(µ+r)) I[x>aw/b] }   
 
   + Max[w/(δ+r),x/(µ+r)]  . 
 
The first term in brackets is bounded from above if  v*(.)  is bounded from above, 
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provided that  W  and  X  have finite means.  (For example,  wP[W>w]  ≤  ∫
∞

w
WdP(W)  < 

∞.)  As  x  grows large the first term tends to  -∞,  but as  w  grows large the first term is 
finite.  
 
 Similar formulae can be derived for  V2  and  V3.  All are bounded from above.  
The corresponding first term for  V2  tends to  -∞  as  w→∞,  but is finite as  x→∞.  Thus  
(Tv)(w,x,k,z)  can be written as    
 
 (Tv)(w,x,k,z)  =  Max[ v*1(w,z), v*2(x,z), v*3(k,z) ]  +  Max[ w/(δ+r), x/(µ+r) ]    
 
The first term on the right is bounded from above (because each of  v*i  are bounded 
from above) and bounded from below (because at least one of  v*i  are finite as either  w  
or  x  →∞).  Thus the operator 
 
   (Sv*)(w,x,k,z)  =  Max[ v*1(w,z), v*2(x,z), v*3(k,z) ]     
 
takes continuous, bounded functions into continuous, bounded functions.  Mortensen 
(1985) in an earlier (but independent) paper uses the same method for proving existence 
in a related class of problems. 
 
 
 

APPENDIX B 
 

SOLVING FOR THE VALUE FUNCTION 
 
The value function is evaluated as follows.  First, the value function is reproduced from 
the text: 
 

V1(w) = [w + µEV(w,X) + δV(0,0)]/(µ+δ+r) 
 

V2(x) = [x + µEV(0,X) + λ2pV(w,x)]/(µ+λ2p+r) 
 

V3 = [-c + µEV(0,X) + λ3pV(w,0)]/(µ+λ3p+r) 
 
Using   
 

µEV(w,X) = µ(1-q2)V1(w) + µ ∫
∞

2x
V(x)dG(x)  

 
δV(0,0) = δV3 

 
etc. 

 
this can be re-written as 
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(1) V1(w) = [w+µ(1-q2)V1(w) + µ ∫
∞

2x 2 (x)dG(x)V + δV3] / (µ+δ+r) 

 

(2) V2(x) = [x+µq0V3 + µ ∫
∞

0x 2 (x)dG(x)V + λ2pV1(w)] / (µ+λ2p+r)  for x≤x2* 

 

(3) V2(x) = [x+µq0V3 + µ ∫
∞

0x 2 (x)dG(x)V + λ2pV2(x)] / (µ+λ2p+r)  for x≥x2* 

 

(4) V3 = [µq0V3 + µ ∫
∞

0x 2 (x)dG(x)V + λ3pV1(w)] / (µ+λ3p+r) 

 
Now, note that  V2(x0*)=V3,  and that  V2(x2*)=V1(w).  In addition, write 
 

V2l = ∫
2

0

x

x 2 (x)dG(x)V  

 

V2u = ∫
∞

2x 2 (x)dG(x)V  

 
Then, equations 1-4 (evaluating 2 at  x0*  and 3 at  x2*) can be written as     
 
 (µq2+δ+r)V1    -   µV2u   - δV3    =  w   
 
 λ2pV1   +   µV2l    +   µV2u  - [µ(1-q0)+λ2p+r]V3   =  -x*0   
 
 -(µ+r)V1    +   µV2l    +   µV2u  + µq0V3  =  -x*2   
 
 λ3pV1  +   µV2l    +   µV2u  - [µ(1-q0)+λ3p+r]V3   =   c     
 
The assumption is maintained that  lnX~N(ν,σ2).  If values for  w,  c,  and  r  are 
assumed, then the solution of the above set of simultaneous equations (using the 
estimated values of µ, λ2p, λ3p, q0, q2, and δ) gives values for ν   and  σ.  (The choice of a 
value for  w  is immaterial, since that only sets the nominal units of account.)  Solving the 
above equations give the following relations between the unknown values of V1, V2u, V2l,  
V3,  x*0,  and  x*2: 
 

(5) x0 = [ x2 (λ3p-λ2p) – c (µ+λ2p+r) ] / [ µ+λ3p+r ] 
 

(6) V3 = V1 - (x2+c) / (µ+λ3p+r) 
 

(7) V2u = [ V1 (µq2+r) - w + δ(x2+c) / (µ+λ3p+r) ] / µ 
 

(8) V2l = q1V1 + [ w + c - (x2+c)(δ+µ(1-q0)+λ3p+r) / (µ+λ3p+r)] / µ 
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Equations (2) and (3) give    
 

V2(x) = [ x + µq0V1 + µq1V2l + µq1V2u + λ2pV(w,x) ] / (µ+λ2p+r) 
 
Integrating separately over the ranges [x*2, ∞),  [x*0, x*2]  gives 
 

(9) (µ+r)V2u =   ∫
∞

2x
dG(x)x + µq2 [ q0V1 + q1V2l + q2V2u ] 

 

(10) (λ2p+µ+r)V2l = ∫
2

0

x

x
dG(x)x + µq1 [ q0V1 + q1V2l + q2V2u ] + λ2pq1V1(w) 

 
By substituting (6-8) into (9), one arrives at the expression 
 

(11) V1(w) { µq2 (1-q2) - [ µ(1-q2) + r ](µq2+r) / µ }  = 
 

- ∫
∞

2x
dG(x)x + q2 [ (x2+c)(µ+λ3p+r+δ) / (µ+λ3p+r) - (w+c) ] 

 
- [ µ(1-q2)+r ] [ w - δ(x2+c) / (µ+λ3p+r) ] / µ 

 
By substituting (6-8 and 11) into (10), one gets 
 

0 = ∫
2

0

x

x
dG(x)x - w(µ+λ2p+r) / µ - c(µ(1-q1) + λ2p + r) / µ 

 
- q1(x2+c)(µq0-δ) / (µ+λ3p+r) 

 
- (x2+c)[ µ(1-q1) + λ2p + r ][ δ + µ(1-q0) + λ3p + r ] / [ µ(µ+λ3p+r) ] 

 
Writing  η2=µ+λ2p+r,  η3=µ+λ3p+r,  this is 
 

(12) 0 = - wη2/µ + ∫
2

0

x

x
dG(x)x - q1(x2+c)(µq0-δ) / η3 

 
- (q1 - η2/µ)(x2+c) [ 1 + (δ-µq0) / η3 ] + c(q1 - η2/µ) 

 
Note that    
 

q0 = P[X < x0] = ∫
0x

0
dG(x)  

 

q1 = P[x0 < X < x2] = ∫
2

0

x

x
dG(x)  = 1-q0-q2 
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q2 = P[X > x2] = ∫
∞

2x
dG(x)  

 
I assume that  lnX~N(ν,σ2),  so that 
 

g(x) dx = (2πσ2x2)-1/2 exp{ [(ln x - ν)/σ]2/2 } 
 

(13) ∫
2

0

x

x
dG(x)x  =  exp{ (ν+σ) / (2σ) } { Φ[ (ln(x2)-ν-σ)/σ]-Q[(ln(x1)-ν-σ)/σ] 

 

(14) q0 = ∫
0x

0
dG(x)  = Φ[ (ln(x0)-ν)/σ ] 

 

(15) q2 = ∫
∞

2x
dG(x)  = 1 - Φ[ (ln(x2)-ν)/σ ] 

 
Values for  A=(µ,q0,q2,λ2p,λ3p,δ)  are estimated from the data.  Values for r  (r=0.005, or 
6.2% per year) and c  (c=0)  are assumed.  The four equations (12-15) form a system of 
non-linear, simultaneous equations.  They can be solved by using Newton's method for 
finding the zero of a system of equations.  The solution gives values for  (x2, ν, σ).  From 
these one can use (5) and (10) to solve for  V1,  and then (6-8) to solve for  V2l,  V2u,  and  
V3.  The results are not very sensitive to the choice of values for r  and c. 
 
 
 

APPENDIX C 
 

DERIVATIVES OF THE VALUE FUNCTION 
 
Derivatives of the value function are evaluated as follows.  First, the value function is 
reproduced from the text: 
 

V1(w) = [w + µEV(w,X) + δV(0,0)] / (µ+δ+r) 
 

V2(x) = [x + µEV(0,X) + λ2pV(w,x)] / (µ+λ2p+r) 
 

V3 = [-c + µEV(0,X) + λ3pV(w,0)] / (µ+λ3p+r) 
 
Using   
 

µEV(w,X) =  µ(1-q2)V1(w)  +  µ ∫
∞

2x
V(x)dG(x)  

δV(0,0) = δV3  etc. 
 
this can be re-written as 
 



 46

(1) V1(w) = [w+µ(1-q2)V1(w) + µ ∫
∞

2x 2 (x)dG(x)V + δV3] / (µ+δ+r) 

 

(2a) V2(x) = [x+µq0V3 + µ ∫
∞

0x 2 (x)dG(x)V + λ2pV1(w)] / (µ+λ2p+r)  for x<x2* 

 

(2b) V2(x) = [x+µq0V3 + µ ∫
∞

0x 2 (x)dG(x)V + λ2pV2(x)] / (µ+λ2p+r)  for x>x2* 

 

(3) V3 = [µq0V3 + µ ∫
∞

0x 2 (x)dG(x)V + λ3pV1(w)] / (µ+λ3p+r) 

 
Write V2'(x) and V3' to represent either    
 

dV2(x)/dδ or dV2(x)/dw 
 

dV3/dδ   dV3/dw 
 
Equations (2) and (3) can be differentiated and written as    
 

V2'(x) = [µq0V3' + µ( ∫
2

0

x

x 2 (x)dG(x)'V + ∫
∞

2x 2 (x)dG(x)'V ) + λ2pV1'] / (µ+λ2p+r)   

for x<x2 
(4)  

V2'(x) = [µq0V3' + µ( ∫
2

0

x

x 2 (x)dG(x)'V + ∫
∞

2x 2 (x)dG(x)'V ) + λ2pV2'(x)] / (µ+λ2p+r)   

for x>x2 
 

V3'(x) = [µq0V3' + µ( ∫
2

0

x

x 2 (x)dG(x)'V + ∫
∞

2x 2 (x)dG(x)'V ) + λ3pV1'] / (µ+λ3p+r) 

 
V2'(x)  is constant for  x<x2  and  x>x2,  and does not exist for x=x2.  (Fortunately, both 
left and right derivatives exist, but they are different.)  Defining 
 

V2l' = V2'(x) for x < x2 
 

V2u' = V2'(x) for x > x2 
 
the three equations (4) can be written as    
 

[ µ(1-q2) + r ]V2u' - µq1V2l' - µq0V3'  =  0 
 

µq2V2u' - [ µ(1-q1) + λ2p + R ]V2l' + λ2pV1'  =  0 
 

µq2V2u + µq1V2l' - [ µ(1-q0) + λ3p + r] + λ3pV1'  =  0 
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The solutions to these three equations is    
 

V2l' = V1' [ (µ+λ3p+r)β2/β1 - (λ3p-λ2p) ] / [µ+λ2p+r] 
 

V2u' = V1' [ (µ+λ3p+r)β2/β1 - λ3p ] / [µ+r] 
 

V3' = V1' β2/β1 
 

β1 = [ µ(1-q0)+λ3p+r ] - [ (µq2)/(µ+r) + (µq1)/(µ+λ2p+r) ] / [µ+λ3p+r] 
 

β2 = [ λ3p-(µq2λ3p)/(µ+r) ] - [ µq1(λ3p-λ2p) ] / [µ+λ2p+r] 
 
To find V1'(w), differentiate (1), first by w, then by δ: 
 

(dV1/dw)(µ+δ+r) = 1 + µ(1-q2)(dV1/dw) + µq2(dV2u/dw) + δ(dV3/dw) 
 

(5) (dV1/dw) = 1/β3 
 

β3 = µ { q21 - [ (µ+λ3p+r)β2/β1 - λ3p ]/[µ+r] } + δ[1 - β2/β1] + r 
 

(dV1/dδ)(µ+δ+r) + V1(w)  =  µ(1-q2)(dV1/dδ) + µq2(dV2u/dδ) + δ(dV3/dδ) + V3 
 

⇒  (dV1/dδ)  =  [ µq2(dV2u/dδ) + δ(dV3/dδ) + V3 - V1(w) ] / (µq2+δ+r) 
 

(6) (dV1/dδ) = [V3 - V1(w)] / β3 
 



 48

REFERENCES 
 
J.G. Altonji, (1982), "The intertemporal substitution model of labour market fluctuations: 

An empirical analysis," Review of Economic Studies, vol. 49, pp. 783-824. 
 
J.G. Altonji and O. Ashenfelter, (1980), "Wage movements and the labour market 

equilibrium hypothesis," Economica, vol. 47, pp. 217-245. 
 
P. Billingsley, (1979), Probability and Measure, John Wiley & Sons, New York  M. 

Braun, (1978), Differential Equations and their Applications , 2nd ed., New York, 
Springer-Verlag 1978. 

 
K. Burdett and D.T. Mortensen, (1978), "The effects of layoffs on optimal search 

strategies," ms. September 1978. 
 
____________, (1978), "Labor supply under uncertainty," in Research in Labor 

Economics, vol. 2  R.G. Ehrenberg ed., JAI Press Inc., Greenwich CT. 
 
T. Coleman, (1984), "Essays on aggregate labor market business cycle fluctuations," 

Ph.D. Dissertation, University of Chicago, December 1984. 
 
T. Coleman, (1985), "Employment, hours, and non-marginal decisions in the U.S. labor 

market: Theory and evidence," Research Paper No. 273, State University of New 
York at Stony Brook, July 1985. 

 
T. Coleman, (1985b), "How short is unemployment duration? Evidence from the CPS 

work experience survey reconsidered," Research Paper No. 270, State University of 
New York at Stony Brook, June 1985. 

 
C. Flinn and J. Heckman, (1982), "New methods for analyzing  structural models of labor 

force dynamics," Journal of Econometrics, 18, pp. 115-168. 
 
R.E. Hall, (1980), "Labor supply and aggregate fluctuations," in On the State of Macro-

Economics, ed. by K. Brunner and A.H. Meltzer.  Amsterdam, North-Holland, 1980. 
 
J.J. Heckman and B. Singer, (1984a), "A method for minimizing the impact of 

distributional assumptions in econometric models for duration data," Econometrica, 
vol. 52, no. 2, pp 271-320. 

 
J.J. Heckman and B. Singer, (1984b), "Econometric duration analysis," Journal of 

Econometrics, vol. 24, pp. 63-132. 
 
H.B. Kaitz, (1970), "Analyzing the length of spells of unemployment," Monthly Labor 

Review, vol. 93, pp. 11-20, November 1970. 
 
J. Kennan, (1983), "An econometric analysis of equilibrium labor market fluctuations," 



 49

University of Iowa College of Business Administration Working Paper Series No. 83-
16.  Presented at the summer 1983 Econometrics Society meetings. 

 
J. Kennan, (1984) "Wage smoothing and labor market equilibrium: Exploratory data 

analysis," ms. date January 5, 1984, University of Iowa. 
 
S.A. Lippman and J.J McCall, "The economics of job search," Economic Inquiry, 14, 

Part I (June 1967), Part II (September 1976). 
 
S.T. Marston, (1976), "Employment instability and high unemployment," Brookings 

Papers on Economic Activity, no. 1. 
 
D.T. Mortensen, "The existence of optimal quitting strategies for a class of job turnover 

models," R.R #85-06, C.V. Starr Center for Applied Economics, New York 
University. 

 
S.J. Nickell, (1979), "Estimating the probability of leaving unemployment," 

Econometrica, vol. 47, pp. 1249-66. 
 
J. Rust, (1984), "Maximum likelihood estimation of controlled discrete choice 

processes," ms. May 1984, Social Systems Research Institute, University of 
Wisconsin. 

 
S.W. Salant, (1977), "Search theory and duration data: A theory of sorts," Quarterly 

Journal of Economics, vol. 91, pp. 39-57, February 1977. 
 
U.S. Bureau of Labor Statistics,  Handbook of Labor Statistics, Bulletin 2070. 
 
 


	Introduction
	Development of Model
	Identification and Estimation
	Parameter Estimates
	Conclusion
	Appendixes
	Existence
	Solving Value Fn
	Derivatives

	References

