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INTRODUCTION 

The forward curve (or yield curve or term structure of interest rates) is the basic building block for 

valuing and hedging bonds, swaps, futures, and options.  In fact, fitting the forward curve to market 

data forms the foundation for most of modern fixed income capital markets.  Nonetheless, debate and 

elaboration continues on both the theoretical and practical fronts.  (See McCulloch 1971, 1975; Shea 

1984; Chambers, Carleton, and Waldman 1984; Vasicek and Fong 1982; Coleman, Fisher, Ibbotson 

1992, 1993; Adams and van Deventer 1994 for various approaches to fitting the yield curve.)  Indeed, 

among practitioners there is no consensus on the “right” way to fit the curve and many, when candid, 

would admit that their firm’s implementation is inadequate in one way or another. 

 

This paper has two purposes.  First, to outline a general framework or methodology for fitting the 

forward curve to market data.  The general framework is a practical, market-tested approach that has 

been developed and refined over the years and has been used at various institutions for pricing, trading, 

and hedging fixed-income derivatives (swaps) portfolios.  Laying out the methodology in a coherent, 

consistent manner is valuable from a practical perspective (although there is nothing radically new in 

this approach).  A general framework allows one to carry tools and techniques across different 

products and markets, leveraging investments in technology and intellectual capital.  A general 

framework also pays dividends in terms of writing and maintaining computer code, a substantial 

benefit given the central role played by mathematical (computer-based) models in pricing and trading 

fixed income securities.  The methodology applies equally to a swap curve, a Treasury or corporate 

bond curve, or a variety of other curves.  Furthermore, this methodology can be used with most of the 

forward curve functional forms discussed in the literature. 

 

The second purpose of this paper is to report on and compare results from fitting forward curves using 

three particular functional forms.  The first two functional forms, piece-wise constant forward rates and 

piece-wise linear zero rates, are important because they are commonly used in the markets and because 

they are simple to implement and to use.  Certain relations between the forwards and zero rates for 

these functional forms are derived and discussed.  The third functional form, piece-wise linear forward 

rates, retains much of the simplicity and ease of use from the first two, while solving a problem (large 

jumps in the instantaneous forward rates) exhibited by them.  Results are reported for US dollar swap 

curves for October 1994 and June 1997.   

 

The organization is as follows.  First the theory of forward and zero curves is briefly reviewed, and 

then the general methodology for fitting yield curves is introduced and discussed.  Second, the uses of 

fitted curves is discussed.  This is important because the use of the curve helps determine an 

appropriate functional form for the forward curve.  This paper focuses on fitting curves for mark-to-

market of swap or bond type instruments, but the general fitting methodology applies to a wider class 

of problems.  Third, three specific functional forms for the forward curve are introduced.  The first two 

(piece-wise constant forwards and piece-wise linear zeros) are commonly used in the market.  The last 

(piece-wise linear forwards) is not as common but solves some problems associated with the first two.   
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THEORETICAL BACKGROUND  

The term structure of interest rates may be stated in several forms; the choice is largely a matter of 

convenience.  The more popular forms are: 

• The forward rate.  This is used here. 
• The zero or spot rate (pure discount rate or yield on zeros).  Theoreticians and textbooks 

commonly discuss this function. 
• The discount or present value function (the price of a zero). 
• The yield to maturity of par bonds paying periodic coupons. Bond traders are interested in this 

form. 
 

Mathematically these different forms are equivalent since one can translate between them.  With any of 

these representations of the term structure, however, there is a fundamental assumption: There is one 

underlying forward curve that prices all instruments of a particular class, possibly with some error.  In 

other words, the present value (price plus accrued) of any fixed cash-flow instrument, say bond  k,  can 

be expressed as: 

 

(1)   PVk =  Σj CFj df[tj ; {F}] + εk  

where 

CFj  = cash flow at maturity tj  
df[tj; {F}] = discount factor for maturity tj (today = 0), calculated from the curve {F} 
{F} = forward curve which does not vary from one instrument to another. 
εk  =  observation (or other) error, may be assumed zero. 

 

The important thing at the moment is not the specific form of  {F},  but rather that it is the same across 

all bonds.  (The choice of whether to use a forward or spot or discount curve, while often significant 

from a practical perspective, is irrelevant for the moment.)  For later reference, the relations between 

the forward curve, the discount curve, and the spot or zero curve are: 

 

(2a)   df(t) = exp[-∫0t f(u) du]   

 

(2b)   y(t) = [∫0t f(u) du] / t 

 where 

f(u) = instantaneous continuously-compounded forward rate at u. 
df(t) = discount factor for a period  t  in the future (today = 0) 
y(t) = continuously-compounded zero yield from today to t 
t = maturity from today, so today = 0.  If  t  is measured in years, then  f(u)  and  y(t)  

are both continuously-compounded annual rates. 
 

GENERAL APPROACH TO FITTING THE YIELD CURVE 

The general approach to fit forward curves is split into three components: 

1. Choosing a parametric functional form for the forward curve, zero curve, or discount curve, which 
by equation (2) defines a parametric form for the discount factor function. 

2. Choosing market data (inputs) and appropriately describing the instruments. 
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3. Defining and implementing an appropriate objective function and fitting methodology that 
specifies how to use the market data to calculate numerical values for the parameters of the 
forward curve. 

 

To make this general approach concrete I will consider the example of fitting a par swap curve, using 

two year, three year, and five year swaps as inputs.  

 

DISCOUNT FACTOR FUNCTION 

The foundation of everything is the Discount Factor function, df[t ;{F}] from above.  This function 

takes two arguments: 1) a date or maturity from today (t), and 2) a set of curve parameters {F} which 

Specify both the parameters and the functional form of the forward curve.  The function df[t;{F}] 

returns the discount factor for time  t  in the future.  This function fully encapsulates the forward curve.   

 

For the example of fitting the par swap curve I will assume that the forward rates are piece-wise 

constant: 

 

(3a)   f(t;f1,f2,f3)  = f1  0 ≤t<2 
     f2  2≤t<3 
     f3  3≤t 
 

The discount factor for a date  t  years in the future would be: 

 

(3b)   df[t; f1,f2,f3]  =   exp[-f1*t]    0≤t<2 
      exp[-2*f1 - f2*(t-2)]   2≤t<3 
      exp[-2*f1 - 1*f2 - f2*(t-3)]  3≤t 

 

This is a function of the parameters  (f1,f2,f3).  These three parameters, together with the specific 

functional form in (3b), would be enough to fully describe the discount factor function.  In terms of 

practical implementation,  df(t;f1,f2,f3)  would be a subroutine taking as arguments the maturity  t,  the 

parameters  (f1,f2,f3),  and possibly an identifier specifying the specific functional form (3b). 

 

The assumption about the functional form of the forward curve is not trivial.  Because the term 

structure of interest rates is never observed at every maturity  t  it is not possible to infer the forward 

curve directly from the data, to simply “draw” the function df(.) from the data.  In a sense the 

functional form assumption fills in where data are missing. At one extreme one observes market 

instruments at sparse points with little information on market levels between these points.  (For 

example there are on-the-run Treasuries at five and 10 years, but not between.)  An assumption must 

be made about the shape of the forward curve between these points and this assumption will to a 

certain extent determine the forward rates between market observations.  In this case the forward curve 

fitting serves as an interpolator between sparse data.  At the other extreme one may observe many 

instruments but each with some error.  An assumption about the general shape of the forward curve 
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would serve to smooth out the errors, with each instrument contributing something to the determination 

of the exact shape.  Here the forward curve fitting serves as a smoothing process across noisy data. 

 

 

MARKET DATA 

The market data consists of two components.  First, the static description of an instrument, such as 

instrument type, maturity, coupon frequency, etc.  Second, the specific market price or rate.   

 

The static description of the instrument is used to build a PV function which returns the price or market 

rate when a forward curve is provided.  For most fixed cash-flow instruments this will simply be a sum 

of discounted cash flows, with the instrument details determining the size and dates of the flows.  In 

terms of a formula the PV will generally be represented as in equation (1): 

 

(1)   PVk =  Σj CFj df[tj ; {F}]  . 

 

For implementation this must be translated into a computer program with a detailed specification of the 

cash flow sizes and dates.  The instrument subroutine encapsulates institutional details such as coupon 

frequency, maturity, relevant holidays, day-count basis of the fixed and floating side of a swap, etc. 

 

Some instruments (for example Euro-dollar futures) do not fit exactly into the paradigm of a sum of 

fixed cash flows.  A more general specification, which includes equation (1) would be 

 

(1a)   Price/Rate = function[ instrument details, df[.; {F}] ] + εk  . 

 

The important aspect is that the forward curve enters only through the discount factor function.  

Structured in this way, the functional representation of the forward curve (encapsulated in the function 

df(.)) and the institutional details of the instrument are separated.  This strict separation allows 

considerable generality in curve fitting.  It allows the same methodology and code to be applied to a 

wide variety of instruments, markets, and forward curve functional forms.  The assumed functional 

form of the forward curve can be changed without re-coding instruments, and instruments can be 

changed without changing the functional representation of the curve. 

 

In the example of fitting a par swap curve, the market data consists of the description and market rates 

for the par swaps.  The market rates are: 

Type Matur Freq Rate 
Swap 2 yrs Semi 6.36 
Swap 3 yrs Semi 6.50 
Swap 5 yrs Semi 6.66 

 
To develop the PV function, consider the cash flows for the two year swap shown in figure 1.  A final 

exchange of principal is assumed.  (Most swap contract do not incorporate a final exchange of 
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principal, but since only net cash flows are paid on swaps this results in the same net cash flows and 

thus the same PV.)  The PV of the fixed side will be the PV of the fixed cash flows, discounted with 

the appropriate discount factors.  The floating side is a libor floating rate bond discounted at libor, 

which must have PV of par (100).  

 

Figure 1 - Cash Flows for Two Year Swap 

Fix

Float

21

100

100
 

 

Assuming for now that the fixed side payments are exactly half the quoted rate and that payments are 

exact half-years in the future, the PV function is  

 

(1b) PV(rate,yrs;f , f , f ) df(i / 2;f , f , f ) rate / 2 100 df(yrs;f , f , f ) 1001 2 3 1 2 3
i 1

2*yrs

1 2 3= ⋅ + ⋅ −
=
∑  

 

We have now completely specified the market data by the combination of the description of the swap 

instruments (the PV function 1b) and the market data (the swap rates). 

 

 

 

 

FITTING THE CURVE 

Once we have defined the discount factor function (the functional form of the curve) on the one hand, 

and the instruments on the other, the curve must be fit to the market.  This requires two things 

1. An objective function which defines what one means by a good fit to the market 
2. A method of calculating the curve parameters which satisfy the objective function. 

For generality we can write this as an operation G which takes us from market instruments to forward 

curve parameters: 

 

(4)   G:  {prices/rates; instrument specifications} →  (p) 

 

The specifics of the operation G will differ depending on the curve functional form and market 

instruments.  The three I have used are 
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• Exact fit to market data as the objective function and successive single-dimension root-finding as 
the method of calculating curve parameters.  This is appropriate for simple curve forms such as 
piece-wise constant forwards or piece-wise linear zeros where the number of parameters is the 
same as the number of instruments. 

 
• Sum of squared differences between actual and predicted prices as the objective function and 

least-squares minimization as the calculation method.  This is appropriate where the number of 
instruments is larger than the number of parameters, for example fitting a relatively smooth 
forward curve to noisy US Treasury bonds and bills (as in Coleman, Fisher, Ibbotson, 1992, 
1993). 

 
• Sum of squared differences between actual and predicted prices plus squared jumps in forwards 

plus squared differences in slopes as the objective function and least-squares minimization as the 
calculation method.  This is used for a curve with piece-wise linear (smoothed) forwards, as 
discussed more fully below. 

 

Continuing with the example of fitting the swap curve, we can use the first of these three methods.  To 

summarize: 

• The forward curve is piece-wise constant, with a break at each instrument maturity.   
• The two year, three year, and five year par swaps are the relevant set of market instruments.   
• The objective function is to choose the parameters so that the PVs of the swaps are all zero. 

The objective function or fitting method is to solve the following three equations: 

 f*
1 s.t.  PV(6.36, 2; f1 )  =  0 

 f*
2 s.t.  PV(6.50, 3; f*

1,f2)  =  0 

 f*
3 s.t.  PV(6.66, 5; f*

1,f*
2,f3)  =  0 

The functional form of the forward curve means that the PV of the two year swap is a function of only 

the first forward rate, so the first equation can be solved by a simple root-finding.  Once the first 

forward rate has been determined, the PV of the three year swap is a function of only the second 

forward rate; the second equation can also be solved by a simple root-finding.  Given the first and 

second forward rates, the third can similarly be solved by a simple root-finding.  Expressing the 

forward rates as semi-annually compounded annual rates the solutions are: 

 f*
1  =  6.360%sab 

 f*
2  =  6.809%sab 

 f*
3  =  6.944%sab 

 

DISCUSSION OF GENERAL APPROACH 

The modularity of the general approach (separating the forward curve, market data, and fitting method) 

simplifies modifications or changes to the curve and inputs.  In the example above simple 

bootstrapping would give the same results but could not be altered easily to accommodate different 

instruments, different curves, or different markets.   

• Properly accommodating instrument details is simplified.  Cash flow details are encapsulated in 
the PV function but do not enter either the discount factor function or the fitting method.  In the 
example above, actual US dollar swap payments are commonly on a 30/360 day basis.  
Incorporating this requires modification of the PV function only, leaving the discount factor and 
curve fitting method unchanged.  (Correctly incorporating day counts, holidays, etc. changes the 
forward rates to 6.359%sab, 6.789%sab, 6.942%sab for a curve with settle date 2-jul-97.) 

 
• Different or odd instruments can be more easily added.  Incorporating Eurodollar deposits or 

futures requires writing a PV function and simple modification to the assumed forward curve 
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(adding forward rates for the deposit or futures maturities).  It does not require changes to the 
fitting method.  (Futures dates generally do not match with swap or deposit dates which can cause 
problems with simple bootstrapping.) 

 
• Fitting a curve for a different swap market is straightforward.  For example, to go from the US 

where swaps are semi-annual to Germany where swaps are annual requires only a modification to 
the PV function.  The discount factor function and the fitting method are unchanged. 

 
• Moving to a completely different market is simplified.  To fit a US Treasury curve the same 

discount factor function and fitting method could be used, with only the PV function re-written to 
incorporate the cash flow amounts and dates of the Treasury instruments.  This is straightforward 
even though the coupons for different Treasuries do not all fall on the same dates, a problem with 
using simple bootstrapping. 

 
• Changing the forward curve functional form is simplified.  To use a curve which assumes piece-

wise linear zeros instead of piece-wise constant forwards in the example above requires a change 
to the discount factor function only, with no change to the PV function or the fitting method.  
(Fitting a piece-wise linear zero curve implies zero rates of 6.359%sab, 6.502%sab, 6.680%sab at 
two, three, and five years.) 

 

 

DIFFERENT USES OF AND CRITERIA FOR FITTED CURVES 

Fitted curves are primarily used for one of two purposes: First, as an interpolator between sparse data 

for mark-to-market, risk measurement, and hedging a portfolio; and second as a smoothing process 

across noisy data for rich - cheap analysis of a market or portfolio. 

 

INTERPOLATOR FOR MARK-TO-MARKET 

When a curve is used for mark-to-market and risk analysis of a portfolio it is primarily an interpolator, 

and the following criteria come to the fore: 

• There are relatively few inputs, but each input is liquid, is measured without error, and must be fit 
exactly. (In building the US swap curve out to 30 years there might be three deposits, 16 futures, 
and eight par swaps for a total of 27 input instruments. No auditor would be happy with such a 
curve that did not price a Euro-dollar futures or a seven year swap back to the observed market 
price.) 

 
• Speed and simplicity of computation is important.  The curve is created and recreated frequently 

during the day as the market changes. 
 
• Strong localization of effect is important, in the sense that if an input instrument changes it has an 

impact only on nearby forward rates.  (For example, if a swap curve is built using 10, 12, and 15 
year swap rates and the 12 year market swap rate changes with no change in the 10 or 15 year 
rates, there should be no appreciable change in forward rates at eight or nine years.)  The reason 
goes back to hedging.  An eight year maturity instrument would be hedged with a seven and 10 
year swap, and should have no appreciable sensitivity to a 12 year instrument.  The curve building 
methodology should incorporate this localization property. 

 
• The forward rates should be reasonably smooth and should not oscillate too much.  Often 

instruments being marked in the portfolio are forward instruments, and odd behavior of the 
forward rates translates directly into odd behavior of the mark-to-market.  
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In summary, for mark-to-market and risk analysis the forward curve is primarily used as an interpolator 

between liquid or on-the-run instruments:  The methodology should produce reasonable interpolation 

at a reasonable cost.  

 

SMOOTHING FOR RICH-CHEAP ANALYSIS 

When a curve is used for rich-cheap analysis, the criteria change: 

• There are generally a large number of input instruments and not all will fit the curve exactly.   (For 
example, fitting a US Treasury curve might involve upwards of 200 bonds.) 

 
• The forward curve represents some unobserved “market” curve, and certain restrictions (such as 

smoothness of forwards) are imposed for theoretical reasons.  The purpose of fitting the curve is to 
smooth noisy data and identify instruments which appear to be miss-priced relative to the 
“market”.  The underlying presumption is that not all instruments fit exactly.   

 
• Weak localization of effect is generally required, but strong localization cannot be imposed.  

Strong localization (changes in an instrument have no impact beyond the neighboring instruments) 
is contrary to the objective of fitting a “market” curve which measures the relative value of 
instruments. (By weak localization I mean that a change in a one year bond should have a minimal 
effect on forwards at 20 years.  This was a problem in some early curve-fitting methods. (See 
Chambers, Carleton, Waldman 1984, and Shea 1984 for a discussion.)) 

 
• Speed and simplicity are often less important, since the curve is usually not rebuilt frequently. 
 

In summary, for rich-cheap analysis more a-priori assumptions about the curve are generally imposed, 

and some minimization technique such a least-squares is used to calculate the parameters of some 

“smooth” curve. 

 

FUNCTIONAL FORMS FOR DIFFERENT APPLICATIONS 

Some functional form assumptions are more appropriate for mark-to-market while others are more 

appropriate for rich-cheap analysis.  The functional forms discussed below (constant forwards, linear 

zeros, and linear forwards) are particularly appropriate for mark-to-market: they all provide, to a 

greater or lesser extent, good interpolation, speed of computation, and localization of effect.  (In fact, 

the constant forwards and linear zeros are probably the most popular among practitioners in the 

derivatives markets.)  On the other hand, cubic splines and linear (smoothed) forwards are more 

appropriate for rich-cheap analysis since these provide better smoothing with less strong localization. 

 

Note that the specific functional forms I have chosen to focus on differ in one important respect from 

those often used in fitting the yield curve: Continuity and smoothness of forward rates across the whole 

curve is not imposed a priori.  Many studies of yield curve fitting impose smoothness (see, for 

example, Vasicek and Fong 1982; Adams and van Deventer, 1994) and smoothness across knot points 

is often cited as an advantage of cubic splines.  Although finite period forward rates should not jump, I 

know of no argument to rule out a finite number of discontinuities (jumps) in the instantaneous 

forward rate function.  Zeros must be continuous, but since zeros are integrals of forwards this is 

ensured as long as instantaneous forwards are piece-wise continuous (have only a finite number of 

jumps).  In fact, there are reasonable arguments why instantaneous forwards should be discontinuous at 
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certain points.  Take the case of a Federal Reserve Open Market Committee meeting at a known future 

date, with market expectations of a possible rate hike (a discontinuous change in short-term interest 

rates).  In this case I would think there should be a discontinuity in instantaneous forwards. 

 

 

SPECIFIC FORWARD CURVE FUNCTIONAL FORMS  

For the actual fitting of a forward curve, the functional form of  {F}  must be specified with a set of 

parameters undetermined.  Mathematically, we want to write the forward curve  {F}  from above as a 

specific functional form, dependent on a set of parameters  p:  {F(p)}.  The data (prices of traded 

instruments) would then be used to determine the parameters.   

 

I focus on three functional forms for forward rates (the last two are variants of each other): 

1. Piece-wise constant forwards - the instantaneous (continuously-compounded) forward rate 
between each of a set of chosen knot or break points (usually the maturity dates of chosen 
instruments) is constant. 

 
2. Piece-wise linear zeros  - the continuously-compounded zero rate between each of a set of chosen 

knot or break points is linear, and the zeros are continuous (but not smooth) across break points.  
This leads to piece-wise linear forward rates which are discontinuous (with sometimes large 
jumps) at break points. 

 
3a. Piece-wise linear (twisted) forwards - the instantaneous forward rate between each of a set of 

chosen break points is linear, with the slope chosen to equal the slope between the average 
forward rates over the two adjacent periods. 

 
3b. Piece-wise linear (smoothed) forwards - as for (3a) the instantaneous forward rate between each of 

a set of chosen break points is linear.  The objective function and minimization routine used to 
choose the parameters (see below) is chosen to provide a smoothed forward curve; i.e. to minimize 
(but not eliminate) the jumps at break points. 

 

These functional forms are appropriate for mark-to-market applications.  The first two are particularly 

simple to implement and use, and are popular with traders in the derivatives markets. Furthermore, 

they imply simple and intuitive curve risk measures. The third specification is important because it 

solves a problem (unreasonable jumps in the forward rates) exhibited by the first two and has worked 

well in the actual pricing, trading, and hedging of a derivatives portfolio. Note, however, that although 

these three forward curve functional forms are important, the general curve fitting framework 

discussed here is not restricted to these. 

 

I do not discuss cubic splines as a functional form because it is often a poor choice for building a mark-

to-market curve.  The smoothness imposed (the forward curve is assumed C1 or C2) can lead to severe 

non-localization and is not necessary.  Cubic splines may be appropriate, however, for rich-cheap 

analysis where smoothing is relatively more important. 
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PIECE-WISE CONSTANT FORWARDS 

For the piece-wise constant curve (shown in figure 2), break points (b1 , …, bn) measured as time from 

today are chosen a priori.  The parameters would be the constant instantaneous forward rates (f1 , …, 

fn)  between the break points.  We can write the curve as  {F(fi)}. 

 

The discount factor for a period  t  in the future would be as given in (2a) above: 

 

  df(t) = exp[-∫0t f(u) du]   

 where 

  f(u) = instantaneous continuously-compounded forward rate at u. 

 

This simplifies to: 

 

(5)   df[t;{F(fi)}] = exp[-Σk
j=1 fj *(bj -bj-1 ) - fk+1 (t-bk)] 

 where 

  k is the index such that bk < t. 

 

Figure 2 - Piece-Wise Constant Forward Interest Rate Curve 
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To apply this to actual data, we might use non-linear least squares to calculate the  (fi )  by minimizing 

the difference between the actual and predicted prices.  The predicted price of instrument  k  would be: 

 

    PVk(fi)  =  Σj CFk
j df[tk

j; {F(fi)}] 

 where 

CFk
j  = cash flow at maturity  tj  for bond k 

df[tk
j; {F}] = discount factor for maturity tk

j, calculated from the (forward) curve 
{F(fi)} 

{F(fi)} = forward curve which does not vary from one instrument to another and 
depends on the parameters (fi) 
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The actual price (plus accrued interest) would be  PVk .  The minimization would be: 

 

   Minfi  Σk [PVk(fi) - PVk ]2 wk  

 where 

(fi) = parameters to be estimated 
k = index running over traded instruments 
PVk(fi)  =  PV of instruments  k  as a function of the forward curve parameters (fi ) 
PVk  = market price of instrument k 
wk  = (possible) weighting function applied to instrument k 

 

If the breaks were chosen so that there was a break at the maturity of each instrument, then the 

minimization problem would reduce to the problem of finding the zeros of a sequence of single 

dimensional functions, since there would be as many parameters as instruments (i.e. as many rates  fi  

as prices PVk).  This gives a "point-to-point" or “bootstrap” exact fit to the observed prices. 

 

The following figure shows the fitted forward curve (instantaneous forward rates) for the USD swap 

market for 5 October 1994 using piece-wise constant forward rates (see below for details of the data 

and results).  The forward rates are well behaved but show jumps at the break points.  Intuitively it 

would make sense to simply “twist” the forwards to help smooth the forward rates across jumps. 

 

Figure 3 - Instantaneous Forward Rates - Piece-Wise Constant Forwards - 5 October 1994 
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PIECE-WISE LINEAR ZEROS 

Break points are chosen a priori, as for the piece-wise constant forward curve.  The zero rate from  t=0  

to the first break is assumed constant.  Thereafter the continuously-compounded zero rates are assumed 

linear between break points.  In other words zero rates are linear and continuous but not smooth across 
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break points.  As shown below, this assumption leads to instantaneous forward rates which are piece-

wise linear and discontinuous across break points.   

 

The restriction that zero rates are linear between break points means that the discount factor function 

can be written as: 

 

(6)   df(t;{F(pi)}) = exp[-y(bk +x)*t] 

 

(7)   y(bk +x) = yk [1 - x/(bk+1-bk)] + yk+1x/(bk+1-bk) . 

 

 where 

  k is the index such that bk < t. 
  x  =  bk+1 - t ; i.e. the distance from the last break to maturity 
  yk  =  zero at break before maturity 
  yk+1  =  zero at break after maturity . 
 

Equation (7) expresses the restriction that zeros between breaks are linear.  A convenient way of 

representing the  yj  in terms of forward rates is as 

 

(8)   yj  =  [Σj
i=1 fi *(bi -bi-1)] / bj   for  j>1    and  yo, y1 = f1. 

 

where  fi  is the average forward rate over the period  [bi-1,bi]  (also the forward rate at the mid-point of 

the period).  The restriction that zeros are continuous and linear between breaks implies that the 

forwards are linear but discontinuous.  Specifically, the forward rate between breaks  i  and  i+1  is 

given by: 

 

(9a)  f(bi+x) = fi+1 + 2*(fi+1 - yi)*[x+(bi - bi+1)/2]/bi+1  

or 

(9b)  f(bi+x) = [yi(bi+1-2bi) + yi+1bi + 2x(yi+1-yi)]/(bi+1-bi) 

 

 where 

  yi, yi+1 = zero rate at breaks i, i+1 
  bi, bi+1 = time to breaks i, i+1 
  x = time from break i; i.e.  0≤x≤bi+1-bi  
  fi+1  = average forward rate over the period (forward rate at the middle)  
 

Equation (9a) implies that the instantaneous forward rates are linear but with the restriction that the 

slope of the forward curve is equal to  

    2*(fi+1-yi)/bi+1   

i.e. twice the difference between the average forward rate and the zero rate at the beginning divided by 

the time to the end of the period.  There is no intuition I am aware of for this expression; it is simply 

the restriction required to ensure that zero rates are linear between break (knot) points.  As will be seen 
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later, this restriction on the slope of the forward curve is often unreasonable.  The derivations of 

equations (9a) and (9b) are given in the appendix. 

 

The following figure shows the fitted forward curve (instantaneous forward rates) for the USD swap 

curve for 5 October 1994 using linear zeros (see appendix for details of the data and results).  The 

forward rates show substantial jumps at the break points.  Examination of figure 4 and comparison 

with figure 3 shows that in many cases the forward rates rise so much during a period that they must 

jump down to the beginning of the next period: The forwards are “twisted up” too much during many 

periods.  This is a common result with piece-wise linear zeros and is not limited to the particular date 

chosen. 

 

Figure 4 - Instantaneous Forward Rates - Piece-Wise Linear Zeros - 5 October 1994 
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PIECE-WISE LINEAR FORWARDS (TWISTED AND SMOOTHED) 

Break points (b1 , …, bn) are chosen a priori, usually equal to the maturities of the market instruments.  

Each forward rate period (except the last) has two parameters: the forward rate at the middle of the 

period (or the average for the period) (fi) and a slope (si).  The last forward rate period has only a 

constant forward rate, fn.  In other words the forward rate is  

 

(18)   f(u)  =  fi + si * [ u - (bi + bi-1)/2]  bi-1 < u ≤ bi  . 

 

with  sn ≡ 0 . 

 

The general expression for the discount factor for a period  t  in the future is given in (2a) above, and 

here this reduces to: 
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(19)  df[t;{F(fi)}] = exp[-Σk
j=1 fj *(bj -bj-1 ) - fk+1 (t-bk) - sk+1 (bk+1bk - bkt - bk+1t + t2)/2] 

 where 

  k is the index such that bk < t. 

 

Figure 5 - Piece-Wise Linear (Smoothed) Forward Interest Rate Curve 
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To apply this to actual data where there is one market instrument per forward rate period further 

restrictions must be imposed.  (There are more parameters than data points.)  The restrictions I have 

used are of two sorts.  The first (what I call “twisted” forwards) is to set the slope equal to the weighted 

average of the slope between the two adjacent (average) forward rates, using the lengths of the forward 

periods as weights.  For k>1 (and remembering that sn≡0 and defining b0=0) the slope  sk  will be: 

 

  sk  =  [s-*years(fk-1 → fk) + s+*years(fk → fk+1)] / years(fk-1 → fk+1) 

 where 

  s-  =  average change from fk-1 to fk  
  s+  =  average change from fk to fk+1  
 
  s-  =  (fk - fk-1) / [ (bk - bk-2)/2] 
 
  s+  =  (fk+1 - fk) / [ (bk+1 - bk-1)/2] 
 
  years(fk-1 → fk)  =  (bk - bk-2) / 2 
 
  years(fk-1 → fk+1)  =  (bk - bk-2) / 2  +  (bk+1 - bk-1) / 2 
 
  sk  =  [(fk - fk-1) + (fk+1 - fk)] / [(bk - bk-2) / 2  +  (bk+1 - bk-1) / 2] 
 
  sk  =  [fk+1 - fk-1] / [(bk - bk-2) / 2  +  (bk+1 - bk-1) / 2] 
For k=1,  
  s1  =  [f2 - f1] / [(b2 - b0) / 2] 
 

This makes the number of parameters (f1, … , fn) equal to the number of market instruments.  The 

parameters can be calculated either using non-linear least squares (on the sum of squared differences 
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between actual and predicted prices) or by multiple passes of sequential single-dimensional root-

finding. 

 

The second set of restrictions I have used is to assess a penalty against both jumps in the instantaneous 

forward rates and changes in the slopes.  In other words, the objective function is a combination of  

• Sum of squared differences between actual and predicted market prices 
• Sum of squared jumps in the instantaneous forward rates across breaks  
• Sum of squared differences in the slopes from period to period.   
 
The latter two parts of the objective function impose the restriction that forward rates should tend to be 

smooth (by minimizing jumps and curvature or zig-zagging) while the first part imposes the restriction 

that the curve fit the market data.  Written mathematically the overall objective function is: 

 

 Min(fi,si)  Σk [PVk(fi,si) - PVk ]2 wk  +  wjump Σn
j=2 [(fj - sj(bj - bj-1)/2) - (fj-1 + sj-1(bj-1 - bj-2)/2)]2  

 

  +  wslope Σn
j=2 [sj - sj-1]2  

 

 where 

(fi, si)  =  parameters to be estimated, with  sn ≡ 0 
k = index running over traded instruments 
PVk(fi)  =  PV of instrument  k  as a function of the forward curve parameters (fi, si) 
PVk  = market price of instrument  k 
wk  = (possible) weighting function applied to instrument k 
wjump  =  relative weighting applied to sum of jump differences 
wslope  =  relative weighting applied to sum of slope differences  

 

Non-linear least squares is used to calculate the parameters. 

 

The following figure shows the fitted forward curve (instantaneous forward rates) for the USD swap 

market for 5 October 1994 using linear (twisted) forwards (see appendix for details of the data and 

results).  Here the forward rates are substantially smoothed; they show neither the flatness and jumps 

of the piece-wise constant curve form nor the “over-twisting” and large jumps exhibited by the piece-

wise linear zero form.  This functional form largely solves the problem of jumps at break points, while 

still maintaining substantial localization of effect.  The piece-wise linear (smoothed) forwards perform 

a slightly better job at smoothing the forwards, but this is bought at the cost of slower speed of 

computation. 
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Figure 6 - Instantaneous Forward Rates - Piece-Wise Linear (Twisted) Forwards - 5 October 1994 
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RESULTS FOR PIECE-WISE CONSTANT AND LINEAR FORWARD CURVES 

This section reports results for fitting market data from the US swap market for two dates, 5 October 

1994 and 30 June 1997.  Both dates show an upward sloping yield curve but with different degrees of 

slope: For October 1994 the 5-30 spread was 76bp while for June 1997 it was only 41bp.  In addition, 

the curve for October 1994 is monotonic out to 30 years while for June 1997 there is a “hump” at the 

long end with 30 and 40 year par swap rates lower than 25 year par rates.   

 

INPUT MARKET DATA 

Table 1 shows the market data for these two dates.  The choice of instruments is determined by the 

intended use of the curve and the liquidity of available instruments.  Here the curve is intended for 

mark-to-market and hedging of a swap and options portfolio.  This implies that liquid instruments with 

good market quotes should be used.  In the US market this means some combination of Eurodollar 

deposits (libor), Eurodollar futures, FRAs, and par swaps.  For October 1994 the choice was deposits 

out to three months, futures from 2.25 months to 38.4 months, and par swaps from four years out to 30 

years.  For June 1997 the choice was deposits only for the first week or two, two monthly futures, 

quarterly futures from 2.6 months to 50.7 months, and par swaps from five years out to 40 years.   
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Table 1 - US Swap Market Data For October 1994 and June 1997 
 5-Oct-1994 Spread 30-Jun-97 Spread  
 Bond Vol All-in Bond Vol All-in 

O/N  5.81  5.5 
1wk libor   5.6875 

1mth libor  5.9   
3mth libor  6.12   

Mthly Fut1  9.00% 94.31 
Mthly Fut2  9.00% 94.265 

Qtly Fut1  15% 93.74 9.00% 94.12 
Qtly Fut2  15% 93.41 10.47% 93.9 
Qtly Fut3  15% 93.14 11.42% 93.805 
Qtly Fut4  15% 92.86 13.12% 93.68 
Qtly Fut5  15% 92.76 14.65% 93.57 
Qtly Fut6  15% 92.65 16.11% 93.46 
Qtly Fut7  15% 92.59 17.51% 93.44 
Qtly Fut8  15% 92.51 16.46% 93.4 
Qtly Fut9  15% 92.53 16.85% 93.35 

Qtly Fut10  15% 92.49 17.50% 93.27 
Qtly Fut11  15% 92.47 18.17% 93.27 
Qtly Fut12  15% 91.97 16.51% 93.23 
Qtly Fut13  16.57% 93.19 
Qtly Fut14  16.76% 93.12 
Qtly Fut15  16.93% 93.12 
Qtly Fut16  16.26% 93.08 

4yr swap 7.16 33 7.49   
5yr swap 7.36 29 7.65 6.389 27.5 6.664 
7yr swap 7.492 37 7.862 6.437 33.5 6.772 

10yr swap 7.69 38 8.07 6.509 37.5 6.884 
12yr swap 7.69 49 8.18 6.5376 41.25 6.9501 
15yr swap 7.69 58 8.27 6.5805 44 7.0205 
20yr swap 7.69 68 8.37 6.652 44.25 7.0945 
25yr swap  6.7235 40.25 7.126 
30yr swap 7.89 52 8.41 6.795 32 7.115 
35yr swap  6.795 31 7.105 
40yr swap  6.795 31 7.105 

 

 

The factors determining the specific instrument choices included: 

• Short end and deposits - Eurodollar deposits (libor) are important because most swap floating rate 
payments are set off libor.  On the other hand deposits, particularly beyond three months, are not 
very liquid so do not provide as good hedges or as good market prices as some other instruments 
(e.g. futures or FRAs).  For October 1994 we chose to use deposits only out to the first quarterly 
futures contract.  For June 1997 the monthly futures were liquid enough that we decided to use 
monthly futures instead of one month and three month deposit rates. 

 
• Middle sector and futures vs. FRAs - For the middle sector of the curve (three months to four or 

five years) the choice is between futures and FRAs.  Either one is suitable.  Factors in favor of 
futures are the high quality and transparency of futures prices (settlement prices are published 
daily by the exchanges) and the common use of futures to hedge (using futures to build the curve 
insures they are priced correctly off the curve).  A factor against futures is the different convexity 
characteristics of futures versus FRAs and swaps, which requires a convexity adjustment when 
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futures are used.  How far to use futures or FRAs depends partly on the liquidity of the further out 
contracts and partly on how far futures or FRAs are used for hedging.  For October 1994 we used 
three years of futures while by June 1997 we used four years of futures. 

 
• Long end - For the longer end of the curve the only choice is par swaps.  We used the most liquid 

par swaps as input points, and relied on the curve as an “interpolator” to price less liquid points 
(such as 17 year par swaps). 

 

The general approach to fitting the curve outlined in this paper simplifies the process of switching 

input instruments (say from using three years to four years of futures or from using FRAs to futures).  

The decision of which instruments to use as inputs should be driven by considerations of instrument 

liquidity, quality and transparency of prices, and use as hedging instruments, not implementation 

issues. 

 

INSTRUMENT PV FUNCTIONS 

The fitting methodology requires building a valuation function (PV function) for each instrument, 

given a discount factor function. Eurodollar (libor) deposits and swaps are both fixed cash-flow 

instruments and so building a PV function is straightforward.1  For Eurodollar futures building a PV 

function it is not so straight-forward.  The major issue is the difference in convexity between futures 

and FRAs.  Deposits and swaps are both equivalent to FRAs in the sense that one can be constructed 

from the other - arbitrage insures the relative pricing is consistent.  (For example a six month libor is 

the same as, and must trade at the same price as, a three month deposit plus a 3x6 FRA.)  The 

possibility of direct arbitrage ensures that Eurodollar (libor) deposits, FRAs, and swaps are all valued 

directly off the same curve.   

 

Eurodollar futures are a different case.  The linear pay-off for futures (daily mark-to-market) leads to a 

futures contract having a different convexity than an FRA (see Burghardt and Hoskins, 1995a, b, c).  

This implies that a futures contract cannot be valued directly off an FRA/swap curve.  One common 

approach is to apply a “convexity correction” to the futures rate which effectively converts it to an 

FRA rate.  The correction I am using (taken from Doust (1995)) is: 

 

   Rfut = Rfra / {DFstart^[½σ2t*(t+½)/(t+¼)]}   

 where 

  t  =  time to futures expiry (in years) 
  Rfra  =  forward (FRA) rate from the curve 
  DFstart  =  discount rate to the futures start date (expiry date) 
  σ  =  volatility in decimal, i.e. measured as 0.20. 

 

FITTED CURVES  

                                                           
1 Libor deposits are assumed two day settle (except O/N which is zero days) and quoted on an A/360 
basis.  Swaps are assumed modified following business day convention, fixed side semi-annual 30/360 
day basis, floating side quarterly A/360 day basis.  These are the standard quoting conventions for 
USD swaps. 
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Three forward curve functional forms are used to fit the market data: Piece-wise constant forwards 

(PWCF), piece-wise linear zeros (PWLZ), and piece-wise linear forwards (PWLF) (both twisted and 

smoothed).  Table 2 shows the estimated parameters.  For October 1994 the first column shows the 

breaks chosen for the forward curve.  These breaks are the maturities of the market instruments used to 

fit the curve.  The second column shows the instantaneous (continuously compounded) forward rates 

calculated assuming constant forward rates between the break points.  The third, fourth, and fifth 

columns show the parameters assuming the zero curve is piece-wise linear and the forward curve is 

piece-wise linear (twisted and smoothed), respectively.  (The level parameters are almost the same for 

all curve forms because in each case they are the average forward rate over the period or the forward 

rate at the middle of the period.)  For the PWLF curve the slope parameters are shown at the bottom of 

the table.  The piece-wise forward smoothed curve was fitted using relative weights of 100 for the sum 

of squared price differences, and 1.0 and 1.0 for the sum of squared jump and slope differences.  Note 

that the slope parameters for the twisted and smoothed forward curves are almost the same except for 

the slope for the first few periods. 

 

All the forward rate functional forms fit the input data, so that all the input instruments are priced back 

to the market.  There is no difference between the curves on this criterion.  There are substantive 

differences between the fitted curves, however, and these become obvious when one graphs the 

instantaneous forward rates.  Figures 7 through 12 show the instantaneous forward rates and zero rates 

implied by the three types of curves for the two dates.  (For figures 7 through 10 only the twisted 

version of the linear forwards are shown since the twisted and smoothed versions are so similar.)   

 

The piece-wise linear zero curve has problems with extreme, saw-tooth, jumps in the instantaneous 

forward rates which do not appear in the piece-wise constant or piece-wise linear forward curves.  

Given two sets of forward rates which both fit observed market data, there are arguments for using the 

smoother set of rates even when it is allowed that instantaneous forward rates may be discontinuous.  

The problems with piece-wise linear zero curves appear severe enough to cast doubt over use of this 

type of curve for pricing any derivative instrument.  Focusing on one section of the October 1994 

curve shows the magnitude of the problems.  According to the fitted piece-wise linear zero curve, the 

average forward rate was 8.255% between 3.2 and 4.0 years, 8.262% between 4.0 and 5.0 years, and 

8.383% between 5.0 and 7.0.  Nonetheless, this curve form implies that the instantaneous forwards 

rose to 8.46% by the end of year three and jumped down by 37bp to 8.06% at the beginning of year 

four, only to rise up to 8.43% by the end of year four and jump back down by 27bp to 8.16%.  In 

contrast the piece-wise constant forward curve implies jumps of only 3bp and 8bp across the year 

boundaries.  This reinforces the fact that the large jumps generate by the piece-wise linear zero curve 

are not implied by the data but are an artifact of restrictions on the slope imposed by the assumption of 

linear zero rates.  (The quarterly forward rates fell by 27bp from the end of year three to the beginning 

of year four and by 21bp from the end of year four to the beginning of year five.  These finite period 

forward rates are more important because they represent actual traded FRAs or caplets.) 
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Neither the piece-wise constant forward nor the piece-wise linear forward curves have the problems 

with extreme jumps exhibited by the piece-wise linear zero curve.  The piece-wise constant forward 

curve has jumps at knot points, but the forward rates do not exhibit the saw-tooth behavior of the 

piece-wise linear zero curve.  At the short end of the curve, where the curve is steep, the piece-wise 

constant curve has a stair-step pattern.  The forward rates do not overshoot as for the piece-wise linear 

zero curve, but the consistent slope of the curve implies that the jumps at knot points could be made 

much smaller simply by twisting the forward rates.  (In fact, at the short end of the curve, the piece-

wise linear curve fits quite well.)   

 

The piece-wise linear forward curve seems to solve both the saw-tooth problem of the linear zero curve 

and the saw-tooth pattern of the constant forward curve.  The twisted version of the linear forward 

curve sets the slope in a period equal to the average forward curve slope in the region, and this appears 

to work pretty well.  The smoothed version explicitly builds the curve to minimize jumps (while still 

fitting market prices) but requires more complex optimization routines to calculate the parameters.   

 

LOCALIZATION AND HEDGING DIFFERENCES 

Both the constant forward and the linear zero curve have strong localization, in the sense that a change 

in an input rate does not alter forward rates beyond the adjacent inputs.  The linear forward curve, 

however, does not exhibit such strong localization - there is a little “bleed” into adjacent forward rate 

periods.  This is a natural result of the slope of the forward rate being dependent on the level of 

adjacent forward rates.  Figure 13 shows the changes in the instantaneous forward rates (for June 

1997) resulting from bumping up the input seven year par swap rate by 1bp.  The constant forward and 

linear zero curves show strong localization, with forwards between five and seven years shifting up 

and forwards between seven and 10 years shifting down and no changes outside the five to 10 year 

period.  This is because the forward rates prior to five years do not depend at all on the forwards after 

five years.  For the piece-wise linear forward curve there is some non-localization with forwards 

between four and five years and 10 and 12 years shifting.  Note, however, that it is only the slopes of 

the forwards that change and the shift is about six times smaller than the shift in forwards between five 

and 10 years. 

 

In response to the shift in the seven year input the forward curve flattens as the forwards in the five to 

seven year period shift up and the forwards in the seven to 10 year period shift down.  (The difference 

between the average forward over the five to seven year period versus the seven to 10 year period is 

14bp before the shift.)  This can be seen in figure 13 with the difference being positive before year five 

and negative after year five.  For the linear forward curve the slopes flatten, both getting smaller 

(closer to zero).  This means that the instantaneous forwards at 5.1 years shift up by more than the 

forwards at 6.9 years, while the forwards at 7.1 years shift down by less than the forwards at 9.9 years, 

as can be seen in figure 13.  The situation is different for the linear zero curve.  The slope of the 

forward curve between five and seven years actually increases, although the forward curve itself has 
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flattened.  This is because for the linear zero curve a shift up in the average forward rate of  h  implies 

a shift up in the slope of  2*h/bi+1  (see equation 9a). 

 

The changes in the shapes of the forward curves imply differences in hedge ratios for the different 

curves.  The easiest way to see the differences is to focus on a "barbell": hedging an instrument whose 

maturity falls between two liquid instruments.  An example would be hedging a six year swap with a 

combination of a five and seven or an eight year swap with a combination of seven and 10.  The 

following table shows the hedge ratios for these two barbells under the three curve types.  The hedge is 

measured in two ways.  First, as the change in the six year par swap rate when the five or seven swap 

rates rise by 1bp (0.42bp and 0.58bp for the constant forwards curve), and second as the change in the 

PV of a par swap ($1mm notional) when the five or seven swap rates rise by 1bp ($205 and $283 for 

the constant forwards curve).   

 

Hedge Ratios For Barbell Hedge, Various Curves, June 1997 
 Constant Forwards Linear Zeros Liner Forwards 
 Swap rate Swap PV Swap rate Swap PV Swap rate Swap PV 

Sensitivity of six to  
   Five 0.42 $205 0.50 $244 0.54 $263 
   Seven 0.58 $283 0.50 $244 0.64 $312 
   Both 1.00 $487 1.00 $487 1.18 $575 
Sensitivity of eight to  
   Seven 0.57 $347 0.66 $402 0.65 $396 
   Ten 0.43 $262 0.34 $207 0.57 $347 
   Both 1.00 $609 1.00 $609 1.22 $743 
 

 

For the linear zero (PWLZ) curve the hedge ratio is linear in the distance to the adjacent hedges.  The 

risk of the six year is equally split between the five and seven year swaps while the eight year is split in 

the ratio 2/3 to the seven year and 1/3 to the 10 year.  The linear hedge ratio is a result of the 

assumption that the zeros between knot points are linearly interpolated.  Linear interpolation of the 

zero rates is close to linear interpolation of the par rates and linear interpolation of par rates implies 

linear allocation of risk; linear zeros and linear risk go hand-in-hand. 

 

The results for the linear forwards curve are interesting.  The six year swap rate rises by 1.18bp when 

both the five and seven rise by 1bp.  Initially this seems counter-intuitive, but it is a result of the 

flattening of the forward curve.  Figure 14 shows what happens.  When the five and seven year swap 

rates rise, the forward rates between four and five years rise while the forwards between seven and 10 

years fall.  The slope between five and seven decreases (the curve flattens) which means that rates in 

the first part of the period (five to six years) rise relative to the rates in the second part of the period 

(six to seven years).  Since the average change over the five to seven year period is enough to generate 

a 1bp rise in the seven year swap rate and the rates in the five to six year period rise more than the rates 

in the six to seven year period, a six year par rate must rise by more than 1bp.  The end result is that a 

six year or eight year par rate will rise by more than 1bp when rates around them rise by 1bp. 
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For the constant forwards curve the risk is allocated in a “sub-linear” manner so that the risk of the six 

year swap is split in the ratio 0.42 / 0.58 while the risk of the eight year swap is split in the ratio 0.57 / 

0.43.   

 

CONCLUSION 

This paper has discussed a general methodology for yield curve fitting which is applicable across a 

wide variety of markets and applications.  I have discussed the application of this methodology to 

fitting curves for mark-to-market, and discussed three specific functional forms - piece-wise constant 

forwards, piece-wise linear zeros, and piece-wise linear forwards - in detail.  I have argued that the 

piece-wise linear functional form has many of the advantages of the simpler forms used in the market 

while solving some of the draw-backs.  Examples of applying the methodology and specific forward 

curve functional forms have been applied to US dollar swap market data for October 1994 and June 

1997. 
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Table 2 - Forward Curve Parameters for Piece-Wise Constant Forwards (PWCF), Piece-Wise Linear Zeros (PWLZ), Piece-Wise Linear (Twisted and Smoothed) 
Forwards (PWL(T)F and PWL(S)F) 

10/5/94 PWCF PWLZ PWL(T)F PWL(S)F 6/30/97 PWCF PWLZ PWL(T)F PWL(S)F
10/7/94 5.890 5.890 5.890 6.032 7/2/97 5.576 5.586 5.575 5.714
11/7/94 5.967 5.967 5.967 6.066 7/7/97 5.764 5.764 5.764 5.718

1/9/95 6.249 6.249 6.249 6.188 8/18/97 5.754 5.748 5.752 5.748
3/14/95 6.317 6.272 6.295 6.332 9/22/97 5.799 5.798 5.798 5.799
6/13/95 6.628 6.628 6.627 6.627 12/17/97 5.925 5.924 5.923 5.924
9/19/95 6.892 6.883 6.883 6.888 3/17/98 6.137 6.137 6.137 6.136

12/19/95 7.171 7.170 7.170 7.169 6/18/98 6.230 6.230 6.230 6.230
3/19/96 7.265 7.264 7.264 7.266 9/17/98 6.354 6.354 6.354 6.354
6/18/96 7.371 7.370 7.370 7.370 12/16/98 6.461 6.460 6.460 6.460
9/17/96 7.425 7.424 7.424 7.425 3/16/99 6.565 6.565 6.565 6.564

12/17/96 7.499 7.498 7.498 7.498 6/17/99 6.576 6.575 6.575 6.575
3/18/97 7.471 7.471 7.471 7.472 9/16/99 6.613 6.612 6.612 6.612
6/17/97 7.504 7.504 7.504 7.504 12/15/99 6.655 6.655 6.655 6.655
9/16/97 7.515 7.515 7.515 7.520 3/15/00 6.723 6.723 6.723 6.723

12/16/97 8.005 8.005 8.004 8.002 6/15/00 6.710 6.710 6.710 6.710
10/7/98 8.233 8.255 8.247 8.229 9/21/00 6.750 6.748 6.749 6.748
10/7/99 8.261 8.262 8.261 8.268 12/20/00 6.780 6.780 6.780 6.780
10/9/01 8.378 8.383 8.380 8.379 3/20/01 6.837 6.837 6.837 6.836
10/7/04 8.620 8.630 8.627 8.629 6/21/01 6.822 6.822 6.822 6.822

10/10/06 8.917 8.921 8.918 8.909 9/20/01 6.857 6.857 6.857 6.857
10/7/09 8.783 8.788 8.783 8.789 7/2/02 6.877 6.882 6.880 6.883
10/7/14 8.924 8.935 8.921 8.930 7/2/04 6.983 6.985 6.984 6.983
10/7/24 8.541 8.545 8.541 8.541 7/2/07 7.127 7.132 7.131 7.132

   1.705 0.740 7/2/09 7.318 7.320 7.319 7.318
   2.065 0.740 7/2/12 7.371 7.374 7.372 7.372
   1.083 0.739 7/3/17 7.428 7.434 7.427 7.432
   0.980 0.738 7/5/22 7.325 7.328 7.316 7.307
   1.250 0.723 7/2/27 6.808 6.804 6.800 6.806
   1.048 0.682 7/2/32 6.732 6.729 6.735 6.728
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   0.750 0.615 7/2/37 6.977 6.977 6.977 6.980
   0.402 0.540  19.703 0.464
   0.321 0.474  2.381 0.464
   0.257 0.417  0.196 0.464
   0.093 0.371  0.633 0.464
   0.011 0.342  0.835 0.462
   0.089 0.334  0.623 0.442
   1.002 0.342  0.430 0.410
   0.940 0.308  0.461 0.378
   0.179 0.211  0.426 0.340
   0.055 0.116  0.232 0.296
   0.091 0.090  0.095 0.257
   0.107 0.114  0.159 0.228
   0.031 0.026  0.224 0.204
   0.000 -0.015  0.110 0.178
   -0.021 0.047  0.049 0.157
    0.135 0.142
    0.175 0.128
    0.085 0.112
    0.040 0.096
    0.076 0.085
    0.067 0.074
    0.064 0.065
    0.067 0.069
    0.048 0.049
    0.017 0.015
    -0.006 0.019
    -0.063 -0.089
    -0.058 -0.074
    0.018 0.023
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APPENDIX - PROOF OF LINEAR FORWARDS 

 

I state in the text that the assumption of piece-wise linear continuous zeros implies piece-wise linear (but 

discontinuous) forwards, specifically the continuously-compounded forward rate between breaks  i  and  

i+1  is given by: 

 

(9a)  f(bi+x) = fi+1 + 2*(fi+1 - yi)*[x+(bi - bi+1)/2]/bi+1  

or 

(9b)  f(bi+x) = [yi(bi+1-2bi) + yi+1bi + 2x(yi+1-yi)]/(bi+1-bi) 

 

 where 

  yi, yi+1 = zero rate at breaks i, i+1 
  bi, bi+1 = time to breaks i, i+1 
  x = time from break i; i.e.  0≤x≤bi+1-bi  
  fi  = average forward rate (forward rate at the middle of the period)  
 

Equation (9b) is derived as follows.  The general relation between forward and zero rates is given in 

equation (2b) above: 

 

(2b)   y(t) = [∫0t f(u) du] / t 

 

For the zero yields at the break points, 

 

(10a)   yi  = y(bi) = ∫0bi f(u)du / bi  

 

(10b)   yi+1  = y(bi+1) = ∫0bi+1 f(u)du / bi+1  

 

Between the break points, i.e. for  0≤x≤bi+1-bi, 

 

   y(bi+x)  =  ∫0bi+x f(u)du / (bi+x) 

 

Using (10a), we can write this as 

 

(11)   y(b + x) = b y f(u)du b + x)i i i
b

b

i
i

i

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

∫
x

/ (   . 

 

The restriction of linearity in zeros means that 
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(12)   y(bi +x) = yi [1 - x/(bi+1-bi)] + yi+1x/(bi+1-bi) . 

 

Combining equations (11) and (12) gives 

 

(13)  b y f(u)du b + x) = y [1- x / (b - b )] + y x / (b - bi i
b

b

i i i+1 i i+1 i+1 i
i

i

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

∫
x

/ ( )  

 

After simplifying and taking the derivative of both sides with respect to x, we arrive at equation (9b) given 

above. 

 

Equation (9a) is obtained by expressing  f(u)  as 

 

(14)    f(u) = fi+1 + c*[u - (bi + bi+1)/2 ]  for bi ≤ u ≤ bi+1  

 

which gives 

 

(15)   ∫bi
bi+xf(u)du  =  fi+1*x + c*x*(bi-bi+1)/2 + c*x2/2 . 

 

Using (10b) we get 

 

   yi+1  =  ∫0bi+1 f(u)du / bi+1  =  [bi yi + ∫bi
bi+1 f(u)du] / bi+1  . 

 

Substituting expression (15) we get 

 

(16)   yi+1 = [biyi + fi+1(bi+1 - bi)] / bi+1  . 

 

Finally, substituting (15) and (16) into (13) and simplifying, we find that expression (13) holds for all 

values of  x  in the relevant range only when 

 

(17)   c = 2[fi+1 - yi] / bi+1 , 

 

which leads to (9a) when  x=u-bi . 
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Figure 7 - Instantaneous Forward Rates For 5 October 1994 - Zero to Thirty Years 
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Figure 8 - Instantaneous Forward Rates For 5 October 1994 - Zero to Six Years 
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Figure 9 - Instantaneous Forward Rates For 30 June 1997 - Zero to Thirty Years 
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Figure 10 - Instantaneous Forward Rates For 30 June 1997 - Zero to Six Years 
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Figure 11 - Forward and Zero Rates for 5 October 1994  
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Figure 12 - Forward and Zero Rates for 30 June 1997 
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Figure 13 - Changes in Instantaneous Forward Rates Resulting from 1bp Shift in Seven Year Par Swap Input, June 1997 
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Figure 14 - Changes in Instantaneous Forward Rates Resulting from 1bp Shift in Five and Seven Year Par Swap Inputs, June 1997 
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